Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Hiro factored 
14y^(3) as 
(7y^(2))(2y).
Bilal factored 
14y^(3) as 
(10 y)(4y^(2)).
Which of them factored 
14y^(3) correctly?
Choose 1 answer:
(A) Only Hiro
(B) Only Bilal
(c) Both Hiro and Bilal
(D) Neither Hiro nor Bilal

Hiro factored 14y3 14 y^{3} as (7y2)(2y) \left(7 y^{2}\right)(2 y) .\newlineBilal factored 14y3 14 y^{3} as (10y)(4y2) (10 y)\left(4 y^{2}\right) .\newlineWhich of them factored 14y3 14 y^{3} correctly?\newlineChoose 11 answer:\newline(A) Only Hiro\newline(B) Only Bilal\newline(C) Both Hiro and Bilal\newline(D) Neither Hiro nor Bilal

Full solution

Q. Hiro factored 14y3 14 y^{3} as (7y2)(2y) \left(7 y^{2}\right)(2 y) .\newlineBilal factored 14y3 14 y^{3} as (10y)(4y2) (10 y)\left(4 y^{2}\right) .\newlineWhich of them factored 14y3 14 y^{3} correctly?\newlineChoose 11 answer:\newline(A) Only Hiro\newline(B) Only Bilal\newline(C) Both Hiro and Bilal\newline(D) Neither Hiro nor Bilal
  1. Identify original expression: Identify the original expression that needs to be factored.\newlineThe original expression is 14y314y^{3}.
  2. Check Hiro's factorization: Check Hiro's factorization.\newlineHiro factored 14y314y^{3} as (7y2)(2y)(7y^{2})(2y).\newlineMultiply Hiro's factors to see if they equal the original expression: (7y2)(2y)=14y3(7y^{2})(2y) = 14y^{3}.
  3. Check Bilal's factorization: Check Bilal's factorization.\newlineBilal factored 14y314y^{3} as (10y)(4y2)(10y)(4y^{2}).\newlineMultiply Bilal's factors to see if they equal the original expression: (10y)(4y2)=40y3(10y)(4y^{2}) = 40y^{3}, which is not equal to 14y314y^{3}.
  4. Determine correct factorization: Determine who factored the expression correctly.\newlineOnly Hiro's factorization results in the original expression 14y314y^{3}, so Hiro factored it correctly.

More problems from Write variable expressions: word problems