Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find an explicit formula for the geometric sequence 
-1,-7,-49,-343,dots Note: the first term should be 
d(1).

d(n)=

Find an explicit formula for the geometric sequence 1,7,49,343,-1,-7,-49,-343,\ldots Note: the first term should be d(1)d(1).\newlined(n)=d(n)=

Full solution

Q. Find an explicit formula for the geometric sequence 1,7,49,343,-1,-7,-49,-343,\ldots Note: the first term should be d(1)d(1).\newlined(n)=d(n)=
  1. Sequence Type: We have the sequence: 1,7,49,343,-1, -7, -49, -343, \ldots\newlineIs the given sequence geometric or arithmetic?\newline1,7,49,343,-1, -7, -49, -343, \ldots\newlineHere, each term is multiplied by a common ratio.\newlineThe given sequence is geometric.
  2. Determining d(1)d(1) and rr: Determine the values of d(1)d(1) and rr of the sequence.\newlineFirst term: d(1)=1d(1) = -1\newlineCommon ratio: r=71=7r = \frac{-7}{-1} = 7
  3. Expression for d(n): We have:\newlined(11) = 1-1\newliner = 77\newlineDetermine an expression to describe d(n).\newlineSubstitute 1-1 for d(11) and 77 for r.\newlined(n) = d(11) rn1\cdot r^{n - 1}\newlined(n) = 17n1-1 \cdot 7^{n - 1}

More problems from Write variable expressions for geometric sequences