Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely.

16x^(2)-81=

Factor completely.\newline16x28116x^{2}-81

Full solution

Q. Factor completely.\newline16x28116x^{2}-81
  1. Determine Factorization Method: Determine if the expression 16x28116x^2 - 81 can be factored using a known method.\newlineThe expression is a difference of squares because it can be written as (4x)292(4x)^2 - 9^2, which fits the pattern a2b2a^2 - b^2.
  2. Write in a2b2a^2 - b^2 Form: Write the expression in the form of a2b2a^2 - b^2.\newline16x2=(4x)216x^2 = (4x)^2\newline81=9281 = 9^2\newlineSo, 16x281=(4x)29216x^2 - 81 = (4x)^2 - 9^2
  3. Apply Difference of Squares Formula: Apply the difference of squares formula, which is a2b2=(ab)(a+b)a^2 - b^2 = (a - b)(a + b).\newline(4x)292=(4x9)(4x+9)(4x)^2 - 9^2 = (4x - 9)(4x + 9)
  4. Write Final Factored Form: Write the final factored form of the expression.\newlineThe factored form of 16x28116x^2 - 81 is (4x9)(4x+9)(4x - 9)(4x + 9).