Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
3+jk+k^(3) when 
j=2 and 
k=6.

Evaluate \newline3+jk+k33+jk+k^{3} when \newlinej=2j=2 and \newlinek=6k=6.

Full solution

Q. Evaluate \newline3+jk+k33+jk+k^{3} when \newlinej=2j=2 and \newlinek=6k=6.
  1. Identify given values and expression: Identify the given values and the expression to evaluate.\newlineWe are given j=2j = 2 and k=6k = 6, and we need to evaluate the expression 3+jk+k33 + jk + k^3.
  2. Substitute given values into expression: Substitute the given values into the expression. Replace jj with 22 and kk with 66 in the expression 3+jk+k33 + jk + k^3 to get 3+(2)(6)+633 + (2)(6) + 6^3.
  3. Perform multiplication: Perform the multiplication.\newlineCalculate 2×62 \times 6 to get 1212.\newlineSo, the expression becomes 3+12+633 + 12 + 6^3.
  4. Calculate power of \newlinekk: Calculate the power of \newlinekk.\newlineCalculate \newline636^3, which is \newline66 multiplied by itself three times: \newline6×6×6=2166 \times 6 \times 6 = 216.\newlineNow the expression is \newline3+12+2163 + 12 + 216.
  5. Add numbers together: Add the numbers together.\newlineAdd 33, 1212, and 216216 to get the final value of the expression.\newline3+12+216=15+216=2313 + 12 + 216 = 15 + 216 = 231.

More problems from Evaluate variable expressions involving rational numbers