Substitute values into expression: Substitute the given values for and into the expression.Expression: \newlineSubstitute r = 141414 and s = 888.\newlineExpression after substitution: \left(\frac{333}{777}\right)\cdot 141414 + \left(\frac{555}{888}\right)\cdot 888
Simplify first term: Simplify the first term (37)⋅14(\frac{3}{7})\cdot 14(73)⋅14.\newlineDivide 141414 by 777 and then multiply by 333.\newline(37)⋅14=3⋅(147)=3⋅2=6(\frac{3}{7})\cdot 14 = 3\cdot(\frac{14}{7}) = 3\cdot 2 = 6(73)⋅14=3⋅(714)=3⋅2=6
Simplify second term: Simplify the second term (58)⋅8(\frac{5}{8})\cdot 8(85)⋅8.\newline Divide 888 by 888 and then multiply by 555.\newline(58)⋅8=5⋅(88)=5⋅1=5(\frac{5}{8})\cdot 8 = 5\cdot(\frac{8}{8}) = 5\cdot 1 = 5(85)⋅8=5⋅(88)=5⋅1=5
Add simplified terms: Add the simplified terms together.\newlineAdd 666 and 555.\newline6+5=116 + 5 = 116+5=11
More problems from Evaluate variable expressions involving rational numbers