Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Convert the angle 
theta=(8pi)/(9) radians to degrees.
Express your answer exactly.

theta=◻^(@)

Convert the angle θ=8π9 \theta=\frac{8 \pi}{9} radians to degrees.\newlineExpress your answer exactly.\newlineθ= \theta=\square^{\circ}

Full solution

Q. Convert the angle θ=8π9 \theta=\frac{8 \pi}{9} radians to degrees.\newlineExpress your answer exactly.\newlineθ= \theta=\square^{\circ}
  1. Convert to degrees: To convert radians to degrees, we use the conversion factor that π\pi radians is equal to 180180 degrees. The formula to convert an angle in radians to degrees is: degrees=radians×(180/π)\text{degrees} = \text{radians} \times (180/\pi).
  2. Apply formula: Now, we apply the formula to θ=8π9\theta=\frac{8\pi}{9} radians. We multiply 8π9\frac{8\pi}{9} by 180π\frac{180}{\pi} to convert it to degrees.
  3. Cancel out pi: The π\pi in the numerator and the π\pi in the denominator cancel out, leaving us with (89)×180(\frac{8}{9}) \times 180.
  4. Calculate exact value: We calculate (89)×180(\frac{8}{9}) \times 180 to get the exact value in degrees. (89)×180=160(\frac{8}{9}) \times 180 = 160 degrees.

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity