Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Convert the angle 
theta=100^(@) to radians.
Express your answer exactly.

theta=◻" radians "

Convert the angle θ=100 \theta=100^{\circ} to radians.\newlineExpress your answer exactly.\newlineθ= radians  \theta=\square \text { radians }

Full solution

Q. Convert the angle θ=100 \theta=100^{\circ} to radians.\newlineExpress your answer exactly.\newlineθ= radians  \theta=\square \text { radians }
  1. Conversion factor for degrees to radians: To convert degrees to radians, we use the conversion factor that 180180 degrees is equal to π\pi radians.
  2. Setting up the conversion for theta: We set up the conversion for theta from degrees to radians using the conversion factor.\newlineθ\theta in radians = θ\theta in degrees) * (π radians180 degrees)\left(\frac{\pi \text{ radians}}{180 \text{ degrees}}\right)
  3. Substituting theta in degrees: Substitute 100100 degrees for θ\theta in degrees in the conversion formula.\newlineθ\theta in radians = (100 degrees)×(π radians/180 degrees)(100 \text{ degrees}) \times (\pi \text{ radians} / 180 \text{ degrees})
  4. Performing the multiplication: Perform the multiplication to find θ\theta in radians.θ\theta in radians = 100180×π\frac{100}{180} \times \pi
  5. Simplifying the fraction: Simplify the fraction 100180\frac{100}{180} by dividing both the numerator and the denominator by their greatest common divisor, which is 2020. \newlineθ\theta in radians = (10020)/(18020)×π\left(\frac{100}{20}\right) / \left(\frac{180}{20}\right) \times \pi \newlineθ\theta in radians = 59×π\frac{5}{9} \times \pi

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity