Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Combine like terms to create an equivalent expression.
Enter any coefficients as simplified proper or improper fractions or integers.

(1)/(7)-3((3)/(7)n-(2)/(7))

Combine like terms to create an equivalent expression.\newlineEnter any coefficients as simplified proper or improper fractions or integers.\newline173(37n27)\frac{1}{7}-3\left(\frac{3}{7}n-\frac{2}{7}\right)

Full solution

Q. Combine like terms to create an equivalent expression.\newlineEnter any coefficients as simplified proper or improper fractions or integers.\newline173(37n27)\frac{1}{7}-3\left(\frac{3}{7}n-\frac{2}{7}\right)
  1. Identify and group like terms: Identify and group like terms in the expression (17)3((37)n(27))(\frac{1}{7}) - 3\left((\frac{3}{7})n - (\frac{2}{7})\right).\newlineThe like terms to be combined are the terms involving 'n'.\newlineExpression: (17)3×(37)n+3×(27)(\frac{1}{7}) - 3 \times (\frac{3}{7})n + 3 \times (\frac{2}{7})
  2. Distribute the 3-3: Distribute the 3-3 across the terms inside the parentheses.\newline(17)3×(37)n+3×(27)=(17)(97)n+(67)(\frac{1}{7}) - 3 \times (\frac{3}{7})n + 3 \times (\frac{2}{7}) = (\frac{1}{7}) - (\frac{9}{7})n + (\frac{6}{7})
  3. Combine constant terms: Combine the constant terms (17)(\frac{1}{7}) and (67)(\frac{6}{7}).\newline(17)+(67)=(77)(\frac{1}{7}) + (\frac{6}{7}) = (\frac{7}{7})
  4. Simplify constant term: Simplify the constant term (77)(\frac{7}{7}).\newline(77)=1(\frac{7}{7}) = 1
  5. Write final expression: Write the final expression after combining like terms.\newlineFinal expression: 1(97)n1 - \left(\frac{9}{7}\right)n

More problems from Simplify variable expressions involving like terms and the distributive property