Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

9x+4y < 8

-3x-7y >= 5
Is 
(1,-2) a solution of the system?
Choose 1 answer:
(A) Yes
(B) No

9 x+4 y<8 \newline3x7y5 -3 x-7 y \geq 5 \newlineIs (1,2) (1,-2) a solution of the system?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No

Full solution

Q. 9x+4y<8 9 x+4 y<8 \newline3x7y5 -3 x-7 y \geq 5 \newlineIs (1,2) (1,-2) a solution of the system?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No
  1. Step 11: Check first inequality: Check if the point (1,2)(1, -2) satisfies the inequality 9x + 4y < 8.\newlineSubstitute x=1x = 1 and y=2y = -2 into the inequality 9x + 4y < 8.\newline9(1) + 4(-2) < 8\newline9 - 8 < 8\newline1 < 8\newlineThe point (1,2)(1, -2) satisfies the first inequality.
  2. Step 22: Check second inequality: Check if the point (1,2)(1, -2) satisfies the inequality 3x7y5-3x - 7y \geq 5.\newlineSubstitute x=1x = 1 and y=2y = -2 into the inequality 3x7y5-3x - 7y \geq 5.\newline3(1)7(2)5-3(1) - 7(-2) \geq 5\newline3+145-3 + 14 \geq 5\newline11511 \geq 5\newlineThe point (1,2)(1, -2) satisfies the second inequality.
  3. Step 33: Determine solution to the system: Determine if the point (1,2)(1, -2) is a solution to the system of inequalities.\newlineSince the point (1,2)(1, -2) satisfies both inequalities, it is a solution to the system.

More problems from Is (x, y) a solution to the system of inequalities?