Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

9sqrt12+5sqrt32-sqrt72

3131. 912+53272 9 \sqrt{12}+5 \sqrt{32}-\sqrt{72}

Full solution

Q. 3131. 912+53272 9 \sqrt{12}+5 \sqrt{32}-\sqrt{72}
  1. Simplify Square Roots: Step Title: Simplify the Square Roots\newlineConcise Step Description: Simplify each square root term by finding the largest perfect square factor.\newlineStep Calculation: \newline- The largest perfect square factor of 1212 is 44, so 12=(4×3)=23\sqrt{12} = \sqrt{(4\times3)} = 2\sqrt{3}.\newline- The largest perfect square factor of 3232 is 1616, so 32=(16×2)=42\sqrt{32} = \sqrt{(16\times2)} = 4\sqrt{2}.\newline- The largest perfect square factor of 7272 is 3636, so 72=(36×2)=62\sqrt{72} = \sqrt{(36\times2)} = 6\sqrt{2}.\newlineStep Output: 912=9×23=1839\sqrt{12} = 9\times2\sqrt{3} = 18\sqrt{3}, 4400, 4411
  2. Combine Like Terms: Step Title: Combine Like Terms\newlineConcise Step Description: Combine the terms with the same radical part.\newlineStep Calculation: \newline- There are no like terms to combine since each term has a different radical part.\newlineStep Output: The expression remains as 183+2026218\sqrt{3} + 20\sqrt{2} - 6\sqrt{2}.
  3. Subtract Same Radical: Step Title: Subtract the Square Root Terms with the Same Radical\newlineConcise Step Description: Subtract the terms with the same radical part.\newlineStep Calculation: \newline- Subtract the coefficients of the terms with 2\sqrt{2}: 20262=14220\sqrt{2} - 6\sqrt{2} = 14\sqrt{2}.\newlineStep Output: The simplified expression is 183+14218\sqrt{3} + 14\sqrt{2}.