Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

8*5^((-t)/(9))=346
Which of the following is the solution of the equation?
Choose 1 answer:
(A) 
t=9log_(5)(43.25)
(B) 
t=-9log_(40)(346)
(C) 
t=-9log_(5)(43.25)
(D) 
t=9log_(346)(40)

85t9=346 8 \cdot 5^{\frac{-t}{9}}=346 \newlineWhich of the following is the solution of the equation?\newlineChoose 11 answer:\newline(A) t=9log5(43.25) t=9 \log _{5}(43.25) \newline(B) t=9log40(346) t=-9 \log _{40}(346) \newline(C) t=9log5(43.25) t=-9 \log _{5}(43.25) \newline(D) t=9log346(40) t=9 \log _{346}(40)

Full solution

Q. 85t9=346 8 \cdot 5^{\frac{-t}{9}}=346 \newlineWhich of the following is the solution of the equation?\newlineChoose 11 answer:\newline(A) t=9log5(43.25) t=9 \log _{5}(43.25) \newline(B) t=9log40(346) t=-9 \log _{40}(346) \newline(C) t=9log5(43.25) t=-9 \log _{5}(43.25) \newline(D) t=9log346(40) t=9 \log _{346}(40)
  1. Isolate exponential term: Isolate the exponential term.\newlineTo solve for tt, we first need to isolate the term with the variable tt in the exponent. We do this by dividing both sides of the equation by 88.\newline8×5(t)/9=3468 \times 5^{(-t)/9} = 346\newline(8×5(t)/9)/8=346/8(8 \times 5^{(-t)/9}) / 8 = 346 / 8\newline5(t)/9=43.255^{(-t)/9} = 43.25
  2. Apply logarithm: Apply the logarithm to both sides of the equation.\newlineTo solve for the exponent, we can apply the logarithm with base 55 to both sides of the equation. This will allow us to remove the exponent on the left side.\newlinelog5(5(t)/9)=log5(43.25)\log_5(5^{(-t)/9}) = \log_5(43.25)
  3. Use property of logarithms: Use the property of logarithms that logb(bx)=x\log_b(b^x) = x. By applying this property, we can simplify the left side of the equation to just the exponent. t9=log5(43.25)\frac{-t}{9} = \log_5(43.25)
  4. Solve for t: Solve for t.\newlineTo solve for t, we need to multiply both sides of the equation by -9").\(\newline\$\frac{-t}{9} \times (-9) = \log_5(43.25) \times (-9)\)\(\newline\)\(t = -9 \times \log_5(43.25)\)

More problems from Multiplication with rational exponents