Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

6^((1)/(6))*2^((5)/(6))*3^((7)/(6))
Which of the following is equivalent to the given expression?
Choose 1 answer:
(A) 6root(3)(3)
(B) 2^((5)/(36))*3^((7)/(36))
(C) 36^((35)/(216))
(D) root(3)(6^(13))

616256376 6^{\frac{1}{6}} \cdot 2^{\frac{5}{6}} \cdot 3^{\frac{7}{6}} \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) 633 6 \sqrt[3]{3} \newline(B) 25363736 2^{\frac{5}{36}} \cdot 3^{\frac{7}{36}} \newline(C) 3635216 36^{\frac{35}{216}} \newline(D) 6133 \sqrt[3]{6^{13}}

Full solution

Q. 616256376 6^{\frac{1}{6}} \cdot 2^{\frac{5}{6}} \cdot 3^{\frac{7}{6}} \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) 633 6 \sqrt[3]{3} \newline(B) 25363736 2^{\frac{5}{36}} \cdot 3^{\frac{7}{36}} \newline(C) 3635216 36^{\frac{35}{216}} \newline(D) 6133 \sqrt[3]{6^{13}}
  1. Combine like terms: Combine the terms with the same base.\newlineWe notice that 66 can be written as 2×32 \times 3, so we rewrite the expression by combining the terms with the same base.\newline6(1)/(6)×2(5)/(6)×3(7)/(6)=(2×3)(1)/(6)×2(5)/(6)×3(7)/(6)6^{(1)/(6)}\times2^{(5)/(6)}\times3^{(7)/(6)} = (2 \times 3)^{(1)/(6)}\times2^{(5)/(6)}\times3^{(7)/(6)}
  2. Apply power property: Apply the power of a product property.\newlineUsing the property (ab)n=an×bn(ab)^n = a^n \times b^n, we can rewrite the expression as:\newline(21×31)16×256×376=216×316×256×376(2^1 \times 3^1)^{\frac{1}{6}}\times 2^{\frac{5}{6}}\times 3^{\frac{7}{6}} = 2^{\frac{1}{6}} \times 3^{\frac{1}{6}} \times 2^{\frac{5}{6}} \times 3^{\frac{7}{6}}
  3. Combine terms with same base: Combine the terms with the same base using the property am×an=am+na^m \times a^n = a^{m+n}. Combine the terms with base 22 and base 33 separately: 2(16+56)×3(16+76)2^{\left(\frac{1}{6} + \frac{5}{6}\right)} \times 3^{\left(\frac{1}{6} + \frac{7}{6}\right)}
  4. Perform exponent addition: Perform the addition of the exponents.\newline2(16+56)=2(66)=21=22^{\left(\frac{1}{6} + \frac{5}{6}\right)} = 2^{\left(\frac{6}{6}\right)} = 2^1 = 2\newline3(16+76)=3(86)=3(43)3^{\left(\frac{1}{6} + \frac{7}{6}\right)} = 3^{\left(\frac{8}{6}\right)} = 3^{\left(\frac{4}{3}\right)}
  5. Simplify the expression: Simplify the expression.\newlineThe simplified expression is:\newline2×3(43)2 \times 3^{(\frac{4}{3})}
  6. Find equivalent expression: Look for the equivalent expression among the answer choices.\newlineThe expression 2×3(43)2 \times 3^{(\frac{4}{3})} does not match any of the answer choices directly. We need to check if we can rewrite it in a different form to match one of the choices.
  7. Rewrite using cube root: Rewrite the expression using the cube root.\newline3433^{\frac{4}{3}} can be written as the cube root of 33 raised to the 44th power, which is 343\sqrt[3]{3^4}.\newlineSo the expression becomes:\newline23432 \cdot \sqrt[3]{3^4}
  8. Check rewritten expression: Check if the rewritten expression matches any of the answer choices.\newlineThe expression 2×3432 \times \sqrt[3]{3^4} still does not match any of the answer choices. We need to check if we made a mistake in our calculations or if we need to rewrite the expression further.
  9. Correct previous mistake: Realize that there is a mistake in the previous steps.\newlineUpon reviewing the steps, we realize that we have not considered the multiplication of 22 with the cube root of 343^4. We need to correct this.

More problems from Multiplication with rational exponents