Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

5+4m^(2)+7m-m^(2)+3m-13
Which of the following is equivalent to the given expression?
Choose 1 answer:
(A) 
(3m-4)(m+2)
(B) 
(3m+4)(m-2)
(C) 
(3m-2)(m+4)
(D) 
(3m+2)(m-4)

5+4m2+7mm2+3m13 5+4 m^{2}+7 m-m^{2}+3 m-13 \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) (3m4)(m+2) (3 m-4)(m+2) \newline(B) (3m+4)(m2) (3 m+4)(m-2) \newline(C) (3m2)(m+4) (3 m-2)(m+4) \newline(D) (3m+2)(m4) (3 m+2)(m-4)

Full solution

Q. 5+4m2+7mm2+3m13 5+4 m^{2}+7 m-m^{2}+3 m-13 \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) (3m4)(m+2) (3 m-4)(m+2) \newline(B) (3m+4)(m2) (3 m+4)(m-2) \newline(C) (3m2)(m+4) (3 m-2)(m+4) \newline(D) (3m+2)(m4) (3 m+2)(m-4)
  1. Rephrase Question: First, let's rephrase the "What is the equivalent expression for the given algebraic expression?"
  2. Combine Like Terms: Combine like terms in the expression 5+4m2+7mm2+3m135 + 4m^2 + 7m - m^2 + 3m - 13. \newline4m2m2=3m24m^2 - m^2 = 3m^2 (combining the m2m^2 terms) \newline7m+3m=10m7m + 3m = 10m (combining the mm terms) \newline513=85 - 13 = -8 (combining the constant terms) \newlineSo the simplified expression is 3m2+10m83m^2 + 10m - 8.
  3. Factor Simplified Expression: Now, we need to factor the simplified expression 3m2+10m83m^2 + 10m - 8. We are looking for two numbers that multiply to (3m2)(8)=24m2(3m^2)(-8) = -24m^2 and add up to 10m10m.
  4. Find Factors: The two numbers that meet these criteria are 12m12m and 2m-2m because 12m×2m=24m212m \times -2m = -24m^2 and 12m+2m=10m12m + -2m = 10m. So we can write the expression as 3m2+12m2m83m^2 + 12m - 2m - 8.
  5. Group and Factor: Now, we factor by grouping. Group the first two terms and the last two terms:\newline(3m2+12m)+(2m8)(3m^2 + 12m) + (-2m - 8)\newlineFactor out the common factor from each group:\newline3m(m+4)2(m+4)3m(m + 4) - 2(m + 4)
  6. Common Factor: Since both terms have a common factor of (m+4)(m + 4), we can factor it out: (3m2)(m+4)(3m - 2)(m + 4)
  7. Compare and Choose: We compare the factored expression (3m2)(m+4)(3m - 2)(m + 4) with the answer choices:\newline(A) (3m4)(m+2)(3m - 4)(m + 2)\newline(B) (3m+4)(m2)(3m + 4)(m - 2)\newline(C) (3m2)(m+4)(3m - 2)(m + 4)\newline(D) (3m+2)(m4)(3m + 2)(m - 4)\newlineThe correct answer is (C) (3m2)(m+4)(3m - 2)(m + 4).

More problems from Simplify rational expressions