Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

52x=75x5 - 2\sqrt{x} = 7 - 5\sqrt{x}.Find `x`

Full solution

Q. 52x=75x5 - 2\sqrt{x} = 7 - 5\sqrt{x}.Find `x`
  1. Isolate square root terms: Isolate the square root terms on one side of the equation.\newlineTo do this, we can add 5x5\sqrt{x} to both sides of the equation to get all the square root terms on one side and the constants on the other side.\newline52x+5x=75x+5x5 - 2\sqrt{x} + 5\sqrt{x} = 7 - 5\sqrt{x} + 5\sqrt{x}\newlineThis simplifies to:\newline5+3x=75 + 3\sqrt{x} = 7
  2. Isolate constant terms: Isolate the constant terms on the other side of the equation.\newlineNow, we subtract 55 from both sides to get the constant terms on one side:\newline5+3x5=755 + 3\sqrt{x} - 5 = 7 - 5\newlineThis simplifies to:\newline3x=23\sqrt{x} = 2
  3. Solve for x\sqrt{x}: Solve for the square root of xx.\newlineTo find x\sqrt{x}, we divide both sides of the equation by 33:\newline3x3=23\frac{3\sqrt{x}}{3} = \frac{2}{3}\newlineThis simplifies to:\newlinex=23\sqrt{x} = \frac{2}{3}
  4. Square both sides: Square both sides to solve for xx.\newlineTo get rid of the square root, we square both sides of the equation:\newline(x)2=(23)2(\sqrt{x})^2 = \left(\frac{2}{3}\right)^2\newlineThis simplifies to:\newlinex=(23)2x = \left(\frac{2}{3}\right)^2\newlinex=49x = \frac{4}{9}

More problems from Find trigonometric functions using a calculator