Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

5^((1)/(3))-5^((4)/(3))
Which of the following expressions is equivalent to the given expression?
Choose 1 answer:
(A) 
-4*5^((1)/(3))
(B) 
-root(3)(620)
(C) 
5^((1)/(4))
(D) 
(1)/(5)

513543 5^{\frac{1}{3}}-5^{\frac{4}{3}} \newlineWhich of the following expressions is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) 4513 -4 \cdot 5^{\frac{1}{3}} \newline( )6203 )-\sqrt[3]{620} \newline(C) 514 5^{\frac{1}{4}} \newline(D) 15 \frac{1}{5}

Full solution

Q. 513543 5^{\frac{1}{3}}-5^{\frac{4}{3}} \newlineWhich of the following expressions is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) 4513 -4 \cdot 5^{\frac{1}{3}} \newline( )6203 )-\sqrt[3]{620} \newline(C) 514 5^{\frac{1}{4}} \newline(D) 15 \frac{1}{5}
  1. Analyze given expression: First, let's analyze the given expression: 5135435^{\frac{1}{3}}-5^{\frac{4}{3}}. We notice that both terms have the base of 55, but different exponents. The second term can be rewritten using the property of exponents that states amn=(am)1na^{\frac{m}{n}} = (a^m)^{\frac{1}{n}}. So, 5435^{\frac{4}{3}} is the same as (54)13(5^4)^{\frac{1}{3}}.
  2. Rewrite second term: Now, let's rewrite the second term using the property mentioned above: 513(54)135^{\frac{1}{3}} - (5^4)^{\frac{1}{3}}. Since 54=6255^4 = 625, we can substitute this into our expression: 513(625)135^{\frac{1}{3}} - (625)^{\frac{1}{3}}.
  3. Recognize cube root: We recognize that (625)13(625)^{\frac{1}{3}} is the cube root of 625625. The cube root of 625625 is 5435^{\frac{4}{3}}, which is 513×55^{\frac{1}{3}} \times 5. Therefore, (625)13=513×5(625)^{\frac{1}{3}} = 5^{\frac{1}{3}} \times 5.
  4. Factor out common term: Substituting back into our expression, we have: 513(513×5)5^{\frac{1}{3}} - \left(5^{\frac{1}{3}} \times 5\right). We can factor out 5135^{\frac{1}{3}} from both terms, which gives us: 513×(15)5^{\frac{1}{3}} \times (1 - 5).
  5. Simplify expression: Now, we simplify the expression inside the parentheses: 151 - 5 equals 4-4. So, our expression becomes: 5(13)(4)5^{\left(\frac{1}{3}\right)} \cdot (-4).
  6. Simplify expression: Now, we simplify the expression inside the parentheses: 151 - 5 equals 4-4. So, our expression becomes: 5(1/3)(4)5^{(1/3)} \cdot (-4).We have now simplified the original expression to 45(1/3)-4 \cdot 5^{(1/3)}, which matches choice (A) from the provided options.

More problems from Domain and range