Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

4y^(2)+9=6x+3

4y=2x+1
If 
(x,y) is the solution to the system of equations shown, what is the value of 
y ?
How do I enter a student-produced response on the SAT? [Show me!]S

4y2+9=6x+3 4 y^{2}+9=6 x+3 \newline4y=2x+1 4 y=2 x+1 \newlineIf (x,y) (x, y) is the solution to the system of equations shown, what is the value of y y ?\newlineHow do I enter a student-produced response on the SAT? [show me!] S

Full solution

Q. 4y2+9=6x+3 4 y^{2}+9=6 x+3 \newline4y=2x+1 4 y=2 x+1 \newlineIf (x,y) (x, y) is the solution to the system of equations shown, what is the value of y y ?\newlineHow do I enter a student-produced response on the SAT? [show me!] S
  1. Solve for y: First, let's solve the second equation for y.\newline4y=2x+14y = 2x + 1\newlineTo find y, we divide both sides of the equation by 44.\newliney=2x+14y = \frac{2x + 1}{4}
  2. Substitute into first equation: Now, let's substitute the expression for yy into the first equation.\newlineThe first equation is 4y2+9=6x+34y^{2} + 9 = 6x + 3.\newlineSubstituting yy with (2x+1)/4(2x + 1) / 4, we get:\newline4[(2x+1)/4]2+9=6x+34[(2x + 1) / 4]^{2} + 9 = 6x + 3
  3. Simplify equation: Next, we simplify the equation by squaring the term (2x+1)/4(2x + 1) / 4 and multiplying by 44.(2x+14)2=(2x+1)216\left(\frac{2x + 1}{4}\right)^{2} = \frac{(2x + 1)^{2}}{16}4(2x+1)216+9=6x+34 \cdot \frac{(2x + 1)^{2}}{16} + 9 = 6x + 3(2x+1)24+9=6x+3\frac{(2x + 1)^{2}}{4} + 9 = 6x + 3
  4. Correct previous mistake: Now, we simplify the left side of the equation by multiplying out the square and dividing by 44.\newline(2x+1)2=4x2+4x+1(2x + 1)^{2} = 4x^{2} + 4x + 1\newline(4x2+4x+1)/4+9=6x+3(4x^{2} + 4x + 1) / 4 + 9 = 6x + 3\newlinex2+x+1/4+9=6x+3x^{2} + x + 1/4 + 9 = 6x + 3
  5. Correct previous mistake: Now, we simplify the left side of the equation by multiplying out the square and dividing by 44.\newline(2x+1)2=4x2+4x+1(2x + 1)^{2} = 4x^{2} + 4x + 1\newline(4x2+4x+1)/4+9=6x+3(4x^{2} + 4x + 1) / 4 + 9 = 6x + 3\newlinex2+x+1/4+9=6x+3x^{2} + x + 1/4 + 9 = 6x + 3We made a mistake in the previous step by incorrectly simplifying the square of (2x+1)(2x + 1). Let's correct this error.\newline(2x+1)2=4x2+4x+1(2x + 1)^{2} = 4x^{2} + 4x + 1\newline(4x2+4x+1)/4+9=6x+3(4x^{2} + 4x + 1) / 4 + 9 = 6x + 3\newlinex2+x+1/4+36/4=6x+3x^{2} + x + 1/4 + 36/4 = 6x + 3\newlinex2+x+37/4=6x+3x^{2} + x + 37/4 = 6x + 3

More problems from Find the number of solutions to a system of equations