Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for x.
4x^(2)+52=-8x

Solve for xx.\newline4x2+52=8x 4 x^{2}+52=-8 x

Full solution

Q. Solve for xx.\newline4x2+52=8x 4 x^{2}+52=-8 x
  1. Move to Standard Form: Write the equation in standard form by moving all terms to one side of the equation.\newline4x2+52=8x4x^2 + 52 = -8x\newlineAdd 8x8x to both sides to get:\newline4x2+8x+52=04x^2 + 8x + 52 = 0
  2. Factor or Use Quadratic Formula: Factor the quadratic equation if possible.\newlineThe quadratic equation 4x2+8x+524x^2 + 8x + 52 does not factor nicely, so we will use the quadratic formula to find the solutions for xx. The quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=4a = 4, b=8b = 8, and c=52c = 52.
  3. Calculate Discriminant: Calculate the discriminant to determine the nature of the roots.\newlineThe discriminant is given by b24acb^2 - 4ac. Let's calculate it:\newlineDiscriminant = (8)24(4)(52)(8)^2 - 4(4)(52)\newlineDiscriminant = 6483264 - 832\newlineDiscriminant = 768-768\newlineSince the discriminant is negative, there are no real solutions to the equation, only complex solutions.
  4. Calculate Complex Solutions: Since the discriminant is negative, calculate the complex solutions using the quadratic formula.\newlinex=8±7688x = \frac{-8 \pm \sqrt{-768}}{8}\newlineWe can simplify 768\sqrt{-768} as 768i\sqrt{768} \cdot i, where ii is the imaginary unit.
  5. Simplify Solutions: Simplify the solutions.\newlinex=8±768i8x = \frac{-8 \pm \sqrt{768} \cdot i}{8}\newlinex=8±83i8x = \frac{-8 \pm 8\sqrt{3} \cdot i}{8}\newlinex=1±3ix = -1 \pm \sqrt{3} \cdot i

More problems from Solve complex trigonomentric equations