Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

4=15-e^(x-8)

4=15ex8 4=15-e^{x-8}

Full solution

Q. 4=15ex8 4=15-e^{x-8}
  1. Isolate Exponential Term: Step Title: Isolate the Exponential Term\newlineConcise Step Description: Add e(x8)e^{(x-8)} to both sides to isolate the exponential term on one side of the equation.\newlineStep Calculation: 4+e(x8)=15e(x8)+e(x8)4 + e^{(x-8)} = 15-e^{(x-8)} + e^{(x-8)}\newlineStep Output: 4+e(x8)=154 + e^{(x-8)} = 15
  2. Subtract 44: Step Title: Subtract 44 from Both Sides\newlineConcise Step Description: Subtract 44 from both sides to get the exponential term by itself.\newlineStep Calculation: 4+e(x8)4=1544 + e^{(x-8)} - 4 = 15 - 4\newlineStep Output: e(x8)=11e^{(x-8)} = 11
  3. Take Natural Logarithm: Step Title: Take the Natural Logarithm of Both Sides\newlineConcise Step Description: Apply the natural logarithm to both sides to solve for xx.\newlineStep Calculation: ln(e(x8))=ln(11)\ln(e^{(x-8)}) = \ln(11)\newlineStep Output: x8=ln(11)x - 8 = \ln(11)
  4. Add 88: Step Title: Add 88 to Both Sides\newlineConcise Step Description: Add 88 to both sides to solve for xx.\newlineStep Calculation: x8+8=ln(11)+8x - 8 + 8 = \ln(11) + 8\newlineStep Output: x=ln(11)+8x = \ln(11) + 8