Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

4(1-t)=5t^(2)
Let t=x and t=y be the solutions to the given equation. 
What is the value of -xy?

◻

4(1t)=5t24(1-t)=5t^{2} \newlineLet t=xt=x and t=yt=y be the solutions to the given equation. \newlineWhat is the value of xy-xy?\newline \square

Full solution

Q. 4(1t)=5t24(1-t)=5t^{2} \newlineLet t=xt=x and t=yt=y be the solutions to the given equation. \newlineWhat is the value of xy-xy?\newline \square
  1. Rewrite in standard form: First, let's rewrite the equation in standard quadratic form.\newline44t=5t24 - 4t = 5t^2\newlineMove all terms to one side to set the equation to zero.\newline5t2+4t4=05t^2 + 4t - 4 = 0
  2. Solve quadratic equation: Now, we need to solve the quadratic equation for tt. We can use the quadratic formula: t=b±b24ac2at = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} Here, a=5a = 5, b=4b = 4, and c=4c = -4.
  3. Plug values into formula: Plug the values into the quadratic formula.\newlinet = [4±4245(4)]/(25)-4 \pm \sqrt{4^2 - 4\cdot5\cdot(-4)}] / (2\cdot5)\newlinet = [4±16+80]/10-4 \pm \sqrt{16 + 80}] / 10\newlinet = [4±96]/10-4 \pm \sqrt{96}] / 10
  4. Find solutions for tt: Simplify the square root and the fraction.\newlinet=4±4610t = \frac{-4 \pm 4\sqrt{6}}{10}\newlinet=25±265t = -\frac{2}{5} \pm \frac{2\sqrt{6}}{5}\newlineSo, the solutions are t=25+265t = -\frac{2}{5} + \frac{2\sqrt{6}}{5} and t=25265t = -\frac{2}{5} - \frac{2\sqrt{6}}{5}.
  5. Let xx and yy be: Let x=25+265x = -\frac{2}{5} + \frac{2\sqrt{6}}{5} and y=25265y = -\frac{2}{5} - \frac{2\sqrt{6}}{5}. To find xy-xy, we multiply xx and yy and then take the negative. -xy = -((-\frac{\(2\)}{\(5\)} + \frac{\(2\)\sqrt{\(6\)}}{\(5\)}) * (-\frac{\(2\)}{\(5\)} - \frac{\(2\)\sqrt{\(6\)}}{\(5\)}))
  6. Simplify multiplication: Use the difference of squares formula to simplify the multiplication.\(\newlinexy=(((25)2(265)2))-xy = -(((-\frac{2}{5})^2 - (\frac{2\sqrt{6}}{5})^2))
  7. Calculate squares: Calculate the squares and simplify.\newlinexy=(4252425)-xy = -\left(\frac{4}{25} - \frac{24}{25}\right)\newlinexy=(2025)-xy = -\left(-\frac{20}{25}\right)
  8. Simplify negative sign: Simplify the negative sign and the fraction. \newlinexy=2025-xy = \frac{20}{25}\newlinexy=45-xy = \frac{4}{5}

More problems from Find trigonometric ratios of special angles