Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

3x-4y=10

2x-4y=6
If 
(x,y) satisfies the given system of equations, what is the value of 
y ?
Choose 1 answer:
(A) 
(1)/(10)
(B) 
(1)/(2)
(c) 
(16)/(5)
(D) 4

3x4y=102x4y=6 \begin{array}{l} 3 x-4 y=10 \\ 2 x-4 y=6 \end{array} \newlineIf (x,y) (x, y) satisfies the given system of equations, what is the value of y y ?\newlineChoose 11 answer:\newline(A) 110 \frac{1}{10} \newline(B) 12 \frac{1}{2} \newline(C) 165 \frac{16}{5} \newline(D) 44

Full solution

Q. 3x4y=102x4y=6 \begin{array}{l} 3 x-4 y=10 \\ 2 x-4 y=6 \end{array} \newlineIf (x,y) (x, y) satisfies the given system of equations, what is the value of y y ?\newlineChoose 11 answer:\newline(A) 110 \frac{1}{10} \newline(B) 12 \frac{1}{2} \newline(C) 165 \frac{16}{5} \newline(D) 44
  1. Equations: We have the system of equations:\newline3x4y=103x - 4y = 10 (11)\newline2x4y=62x - 4y = 6 (22)\newlineTo find the value of yy, we can subtract equation (22) from equation (11) to eliminate yy.
  2. Eliminating y: Subtracting equation (22) from equation (11) gives us:\newline(3x4y)(2x4y)=106(3x - 4y) - (2x - 4y) = 10 - 6\newlineThis simplifies to:\newline3x2x=1063x - 2x = 10 - 6
  3. Simplifying equation: Simplifying the above equation gives us:\newlinex=4x = 4\newlineNow we have the value of xx.
  4. Finding x: Next, we substitute the value of xx back into one of the original equations to solve for yy. We can use equation (22) for this purpose:\newline2x4y=62x - 4y = 6\newlineSubstituting x=4x = 4 gives us:\newline2(4)4y=62(4) - 4y = 6
  5. Substituting xx into equation: Solving the above equation for yy gives us:\newline84y=68 - 4y = 6\newlineSubtracting 88 from both sides gives us:\newline4y=68-4y = 6 - 8
  6. Solving for y: Simplifying the above equation gives us:\newline4y=2-4y = -2\newlineDividing both sides by 4-4 gives us:\newliney=24y = \frac{-2}{-4}
  7. Final value of y: Solving the above equation for y gives us:\newliney = 12\frac{1}{2}\newlineSo the value of y is 12\frac{1}{2}, which corresponds to choice (B).

More problems from Domain and range