Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

1100=700(1+(00.2)/(12))^(12 t)

1100=700(1+00.212)12t 1100=700\left(1+\frac{00.2}{12}\right)^{12 t}

Full solution

Q. 1100=700(1+00.212)12t 1100=700\left(1+\frac{00.2}{12}\right)^{12 t}
  1. Isolate exponential part: First, let's isolate the exponential part of the equation by dividing both sides by 700700.\newline1100700=(1+0.212)12t\frac{1100}{700} = \left(1 + \frac{0.2}{12}\right)^{12 \cdot t}
  2. Calculate left side: Now, let's calculate the left side of the equation. 1100700=1.57142857\frac{1100}{700} = 1.57142857\ldots
  3. Take natural logarithm: Next, we need to take the natural logarithm (ln\ln) of both sides to solve for tt.ln(1.57142857)=ln((1+(0.2/12))12t)\ln(1.57142857\ldots) = \ln\left((1 + (0.2 / 12))^{12 \cdot t}\right)
  4. Rewrite right side: Using the property of logarithms that ln(ab)=b×ln(a)\ln(a^b) = b \times \ln(a), we can rewrite the right side of the equation.ln(1.57142857)=12×t×ln(1+(0.212))\ln(1.57142857\ldots) = 12 \times t \times \ln(1 + (\frac{0.2}{12}))
  5. Calculate natural logarithm: Now, let's calculate the natural logarithm of both sides.\newlineln(1.57142857...)0.45107562\ln(1.57142857...) \approx 0.45107562\newlineln(1+(0.2/12))ln(1.01666667...)0.01652943\ln(1 + (0.2 / 12)) \approx \ln(1.01666667...) \approx 0.01652943
  6. Solve for t: We can now solve for tt by dividing both sides by 12×ln(1+(0.2/12))12 \times \ln(1 + (0.2 / 12)).
    t=ln(1.57142857...)12×ln(1+(0.2/12))t = \frac{\ln(1.57142857...)}{12 \times \ln(1 + (0.2 / 12))}
    t0.4510756212×0.01652943t \approx \frac{0.45107562}{12 \times 0.01652943}
  7. Calculate value of t: Finally, let's calculate the value of tt.t0.4510756212×0.01652943t \approx \frac{0.45107562}{12 \times 0.01652943}t0.451075620.19835316t \approx \frac{0.45107562}{0.19835316}t2.274t \approx 2.274

More problems from Find trigonometric functions using a calculator