Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

1.6(y^(2)+5)=13.4 y

1.6(y2+5)=13.4y 1.6\left(y^{2}+5\right)=13.4 y

Full solution

Q. 1.6(y2+5)=13.4y 1.6\left(y^{2}+5\right)=13.4 y
  1. Distribute terms in parentheses: Distribute the 1.61.6 to both terms inside the parentheses.\newline1.6(y2)+1.6(5)=13.4y1.6(y^2) + 1.6(5) = 13.4 y\newline1.6y2+8=13.4y1.6y^2 + 8 = 13.4 y
  2. Rearrange to form quadratic equation: Rearrange the equation to set it to zero and form a quadratic equation.\newline1.6y213.4y+8=01.6y^2 - 13.4 y + 8 = 0
  3. Use quadratic formula: Since the quadratic equation is not easily factorable, use the quadratic formula to solve for yy. The quadratic formula is y=b±b24ac2ay = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=1.6a = 1.6, b=13.4b = -13.4, and c=8c = 8.
  4. Calculate discriminant: Calculate the discriminant b24acb^2 - 4ac.\newlineDiscriminant = (13.4)24(1.6)(8)(-13.4)^2 - 4(1.6)(8)\newlineDiscriminant = 179.564(12.8)179.56 - 4(12.8)\newlineDiscriminant = 179.5651.2179.56 - 51.2\newlineDiscriminant = 128.36128.36
  5. Calculate possible values for y: Calculate the two possible values for y using the quadratic formula.\newliney=(13.4)±128.362×1.6y = \frac{-(-13.4) \pm \sqrt{128.36}}{2 \times 1.6}\newliney=13.4±128.363.2y = \frac{13.4 \pm \sqrt{128.36}}{3.2}
  6. Calculate positive root: Calculate the positive root.\newliney=13.4+128.363.2y = \frac{13.4 + \sqrt{128.36}}{3.2}\newliney=13.4+11.333.2y = \frac{13.4 + 11.33}{3.2}\newliney=24.733.2y = \frac{24.73}{3.2}\newliney7.73y \approx 7.73
  7. Calculate negative root: Calculate the negative root.\newliney=13.4128.363.2y = \frac{13.4 - \sqrt{128.36}}{3.2}\newliney=13.411.333.2y = \frac{13.4 - 11.33}{3.2}\newliney=2.073.2y = \frac{2.07}{3.2}\newliney0.65y \approx 0.65

More problems from Find trigonometric functions using a calculator