Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

0=32(x4)70=3\cdot2^{(x-4)}-7

Full solution

Q. 0=32(x4)70=3\cdot2^{(x-4)}-7
  1. Isolate Exponential Term: Step Title: Isolate the Exponential Term\newlineConcise Step Description: Add 77 to both sides of the equation to isolate the exponential term.\newlineStep Calculation: 0+7=32(x4)0 + 7 = 3 \cdot 2^{(x-4)}, so 7=32(x4)7 = 3 \cdot 2^{(x-4)}\newlineStep Output: 7=32(x4)7 = 3 \cdot 2^{(x-4)}
  2. Divide by Coefficient: Step Title: Divide by the Coefficient of the Exponential Term\newlineConcise Step Description: Divide both sides of the equation by 33 to solve for the exponential term.\newlineStep Calculation: 73=32(x4)3\frac{7}{3} = \frac{3\cdot 2^{(x-4)}}{3}, so 73=2(x4)\frac{7}{3} = 2^{(x-4)}\newlineStep Output: 73=2(x4)\frac{7}{3} = 2^{(x-4)}
  3. Apply Logarithm: Step Title: Apply the Logarithm\newlineConcise Step Description: Apply the logarithm to both sides of the equation to solve for the exponent.\newlineStep Calculation: log2(73)=log2(2x4)\log_2(\frac{7}{3}) = \log_2(2^{x-4}), so log2(73)=x4\log_2(\frac{7}{3}) = x - 4\newlineStep Output: log2(73)=x4\log_2(\frac{7}{3}) = x - 4
  4. Solve for x: Step Title: Solve for x\newlineConcise Step Description: Add 44 to both sides of the equation to solve for x.\newlineStep Calculation: log2(73)+4=x4+4\log_2(\frac{7}{3}) + 4 = x - 4 + 4, so log2(73)+4=x\log_2(\frac{7}{3}) + 4 = x\newlineStep Output: x=log2(73)+4x = \log_2(\frac{7}{3}) + 4