Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[y=-x-11],[y=x^(2)-5x-7]:}
Which of the following is a solution to the system of equations?
Choose 1 answer:
(A) 
(-2,-9)
(B) 
(0,-7)
(c) 
(2,-13)
(D) 
(3,-13)

y=x11y=x25x7 \begin{array}{l} y=-x-11 \\ y=x^{2}-5 x-7 \end{array} \newlineWhich of the following is a solution to the system of equations?\newlineChoose 11 answer:\newline(A) (2,9) (-2,-9) \newline(B) (0,7) (0,-7) \newline(C) (2,13) (2,-13) \newline(D) (3,13) (3,-13)

Full solution

Q. y=x11y=x25x7 \begin{array}{l} y=-x-11 \\ y=x^{2}-5 x-7 \end{array} \newlineWhich of the following is a solution to the system of equations?\newlineChoose 11 answer:\newline(A) (2,9) (-2,-9) \newline(B) (0,7) (0,-7) \newline(C) (2,13) (2,-13) \newline(D) (3,13) (3,-13)
  1. System of Equations: We have the system of equations:\newliney=x11 y = -x - 11 \newliney=x25x7 y = x^2 - 5x - 7 \newlineTo find the solution to the system, we need to find a pair of x and y values that satisfy both equations simultaneously.
  2. Substituting and Rearranging: Let's substitute the first equation into the second one to solve for x:\newlinex11=x25x7 -x - 11 = x^2 - 5x - 7 \newlineNow, we will rearrange the equation to set it to zero and solve for x:\newlinex25x+x7+11=0 x^2 - 5x + x - 7 + 11 = 0 \newlinex24x+4=0 x^2 - 4x + 4 = 0
  3. Factoring the Quadratic Equation: We can factor the quadratic equation:\newline(x2)2=0 (x - 2)^2 = 0 \newlineThis gives us one solution for x:\newlinex=2 x = 2
  4. Finding the Value of x: Now that we have the value of x, we can substitute it back into either of the original equations to find the corresponding y value. Let's use the first equation:\newliney=x11 y = -x - 11 \newliney=211 y = -2 - 11 \newliney=13 y = -13
  5. Substituting xx into the Original Equation: We have found a pair (x,y)=(2,13)(x, y) = (2, -13) that satisfies both equations. Let's check if this pair is one of the given choices:\newline(A) (2,9)(-2,-9)\newline(B) (0,7)(0,-7)\newline(C) (2,13)(2,-13)\newline(D) (3,13)(3,-13)\newlineThe correct answer is (C) (2,13)(2, -13).

More problems from Domain and range