Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[y < 3x+4],[y < 5x+2]:}
Which of the following ordered pairs 
(x,y) satisfies the system of inequalities?
Choose 1 answer:
(A) 
(-1,0)
(B) 
(1,7)
(c) 
(2,11)
(D) 
(3,-4)

ylt;3x+4ylt;5x+2 \begin{array}{l} y&lt;3 x+4 \\ y&lt;5 x+2 \end{array} \newlineWhich of the following ordered pairs (x,y) (x, y) satisfies the system of inequalities?\newlineChoose 11 answer:\newline(A) (1,0) (-1,0) \newline(B) (1,7) (1,7) \newline(C) (2,11) (2,11) \newline(D) (3,4) (3,-4)

Full solution

Q. y<3x+4y<5x+2 \begin{array}{l} y<3 x+4 \\ y<5 x+2 \end{array} \newlineWhich of the following ordered pairs (x,y) (x, y) satisfies the system of inequalities?\newlineChoose 11 answer:\newline(A) (1,0) (-1,0) \newline(B) (1,7) (1,7) \newline(C) (2,11) (2,11) \newline(D) (3,4) (3,-4)
  1. Test (1,0)(-1,0) in 11st inequality: Test the ordered pair (A) (1,0)(-1,0) in the first inequality y < 3x+4. Substitute 1-1 for xx and 00 for yy. 0 < 3(-1) + 4 0 < -3 + 4 0 < 1 Since 0 < 1 is true, (1,0)(-1,0) satisfies the first inequality y < 3x+4.
  2. Test (1,0)(-1,0) in 22nd inequality: Test the ordered pair AA (1,0)(-1,0) in the second inequality y < 5x+2.\newlineSubstitute 1-1 for xx and 00 for yy.\newline0 < 5(-1) + 2\newline0 < -5 + 2\newlineAA00\newlineSince AA00 is false, (1,0)(-1,0) does not satisfy the second inequality y < 5x+2.
  3. Test 1,71,7 in 11st inequality: Test the ordered pair (B) 1,71,7 in the first inequality y < 3x+4. Substitute 11 for xx and 77 for yy. 7 < 3(1) + 4 7 < 3 + 4 7 < 7 Since 7 < 7 is false (77 is not less than 77, they are equal), 1,71,7 does not satisfy the first inequality y < 3x+4.
  4. Test 2,112,11 in 11st inequality: Test the ordered pair (C) 2,112,11 in the first inequality y < 3x+4. Substitute 22 for xx and 1111 for yy. 11 < 3(2) + 4 11 < 6 + 4 11 < 10 Since 11 < 10 is false, 2,112,11 does not satisfy the first inequality y < 3x+4.
  5. Test 3,43,-4 in 11st inequality: Test the ordered pair DD 3,43,-4 in the first inequality y < 3x+4.\newlineSubstitute 33 for xx and 4 -4 for yy.\newline-4 < 3(3) + 4\newline-4 < 9 + 4\newline-4 < 13\newlineSince \\(-4\) < \(13\)\$ is true, 3,43,-4 satisfies the first inequality y < 3x+4.
  6. Test 3,43,-4 in 22nd inequality: Test the ordered pair (D) 3,43,-4 in the second inequality y < 5x+2. Substitute 33 for xx and \\4-4\) for yy. (-4\) < 55(33) + 22\ (-4\) < 1515 + 22\ (-4\) < 1717\ Since (-4\) < 1717\ is true, 3,43,-4 satisfies the second inequality y < 5x+2.

More problems from Is (x, y) a solution to the system of linear inequalities?