Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

y \geq \frac{3}{10}x+5 \newline y > 5x-7 \newlineWhich of the following ordered pairs (x,y)(x,y) satisfies the system of inequalities?\newlineChoose 11 answer:\newline(A) (0,5)(0,5)\newline(B) (1,1)(1,1)\newline(C) (3,8)(3,8)\newline(D) (10,6)(10,6)

Full solution

Q. y310x+5y>5x7 y \geq \frac{3}{10}x+5 \newline y > 5x-7 \newlineWhich of the following ordered pairs (x,y)(x,y) satisfies the system of inequalities?\newlineChoose 11 answer:\newline(A) (0,5)(0,5)\newline(B) (1,1)(1,1)\newline(C) (3,8)(3,8)\newline(D) (10,6)(10,6)
  1. Step 11: Check first inequality: Check if the ordered pair (0,5)(0,5) satisfies both inequalities.\newlineFirst inequality: y310x+5y \geq \frac{3}{10}x + 5\newlineSubstitute x=0x = 0 and y=5y = 5 into the inequality.\newline53100+55 \geq \frac{3}{10}\cdot0 + 5\newline555 \geq 5\newlineThis is true.
  2. Step 22: Check second inequality: Check the second inequality for the ordered pair (0,5)(0,5).\newlineSecond inequality: y > 5x - 7\newlineSubstitute x=0x = 0 and y=5y = 5 into the inequality.\newline5 > 5\cdot0 - 7\newline5 > -7\newlineThis is also true.
  3. Step 33: Confirm solution: Since the ordered pair (0,5)(0,5) satisfies both inequalities, we have found a solution. We do not need to check the other options as the question asks for only one correct answer.

More problems from Is (x, y) a solution to the system of inequalities?