Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(x^(6//5))^(5)=

(x6/5)5 \left(x^{6 / 5}\right)^{5} =

Full solution

Q. (x6/5)5 \left(x^{6 / 5}\right)^{5} =
  1. Apply power rule: Apply the power of a power rule, which states that (am)n=amn(a^{m})^{n} = a^{m*n}.\newline(x65)5=x(655)(x^{\frac{6}{5}})^{5} = x^{(\frac{6}{5}*5)}
  2. Multiply exponents: Multiply the exponents 65\frac{6}{5} by 55.x(65)5=x6551x^{\left(\frac{6}{5}\right)\cdot 5} = x^{\frac{6}{5} \cdot \frac{5}{1}}
  3. Perform fraction multiplication: Perform the multiplication of the fractions. x(6551)=x(305)x^{(\frac{6}{5} \cdot \frac{5}{1})} = x^{(\frac{30}{5})}
  4. Simplify fraction: Simplify the fraction 305\frac{30}{5}. \newlinex(305)=x6x^{\left(\frac{30}{5}\right)} = x^6

More problems from Simplify radical expressions involving fractions