Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(w-(3)/(2))(w+(7)/(2))
Which of the following is equivalent to the given expression?
Choose 1 answer:
(A) 
((w-3)(w+7))/(2)
(B) 
((2w+7)(2w-3))/(2)
(c) 
((w-3)(w+7))/(4)
(D) 
((2w+7)(2w-3))/(4)

(w32)(w+72) \left(w-\frac{3}{2}\right)\left(w+\frac{7}{2}\right) \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) (w3)(w+7)2 \frac{(w-3)(w+7)}{2} \newline(B) (2w+7)(2w3)2 \frac{(2 w+7)(2 w-3)}{2} \newline(C) (w3)(w+7)4 \frac{(w-3)(w+7)}{4} \newline(D) (2w+7)(2w3)4 \frac{(2 w+7)(2 w-3)}{4}

Full solution

Q. (w32)(w+72) \left(w-\frac{3}{2}\right)\left(w+\frac{7}{2}\right) \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) (w3)(w+7)2 \frac{(w-3)(w+7)}{2} \newline(B) (2w+7)(2w3)2 \frac{(2 w+7)(2 w-3)}{2} \newline(C) (w3)(w+7)4 \frac{(w-3)(w+7)}{4} \newline(D) (2w+7)(2w3)4 \frac{(2 w+7)(2 w-3)}{4}
  1. Simplify the expression: Now, we simplify the expression by combining like terms and multiplying the constants.\newlinew2+72w32w3×72×2w^2 + \frac{7}{2}w - \frac{3}{2}w - \frac{3 \times 7}{2 \times 2}\newlinew2+7w3w2214w^2 + \frac{7w - 3w}{2} - \frac{21}{4}\newlinew2+4w2214w^2 + \frac{4w}{2} - \frac{21}{4}\newlinew2+2w214w^2 + 2w - \frac{21}{4}
  2. Check answer choices: We can see that none of the answer choices match the simplified form w2+2w214w^2 + 2w - \frac{21}{4} exactly. However, we need to check if any of the answer choices can be simplified to this form.\newlineLet's check each answer choice to see if any of them simplify to w2+2w214w^2 + 2w - \frac{21}{4}.
  3. Checking choice (A): Checking choice (A):\newline((w3)(w+7)2)(\frac{(w-3)(w+7)}{2})\newlineThis simplifies to (w2+4w212)(\frac{w^2 + 4w - 21}{2}), which is not the same as w2+2w214w^2 + 2w - \frac{21}{4}.
  4. Checking choice (B): Checking choice (B):\newline((2w+7)(2w3)2)(\frac{(2w+7)(2w-3)}{2})\newlineThis simplifies to (4w29+14w2)(\frac{4w^2 - 9 + 14w}{2}), which is not the same as w2+2w214w^2 + 2w - \frac{21}{4}.
  5. Checking choice (C): Checking choice (C):\newline((w3)(w+7)4)(\frac{(w-3)(w+7)}{4})\newlineThis simplifies to (w2+4w214)(\frac{w^2 + 4w - 21}{4}), which is not the same as w2+2w214w^2 + 2w - \frac{21}{4}.
  6. Checking choice (D): Checking choice (D):\newline((2w+7)(2w3)4)(\frac{(2w+7)(2w-3)}{4})\newlineThis simplifies to (4w2+14w6w214)(\frac{4w^2 + 14w - 6w - 21}{4}), which simplifies further to (4w2+8w214)(\frac{4w^2 + 8w - 21}{4}).\newlineIf we divide each term by 44, we get w2+2w214w^2 + 2w - \frac{21}{4}, which matches our simplified expression.

More problems from Domain and range