Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(tan alpha+cot alpha)/(tan alpha-cot alpha)=(1)/(2sin^(2)alpha-1)

tanα+cotαtanαcotα=12sin2α1 \frac{\tan \alpha+\cot \alpha}{\tan \alpha-\cot \alpha}=\frac{1}{2 \sin ^{2} \alpha-1}

Full solution

Q. tanα+cotαtanαcotα=12sin2α1 \frac{\tan \alpha+\cot \alpha}{\tan \alpha-\cot \alpha}=\frac{1}{2 \sin ^{2} \alpha-1}
  1. Trigonometric Identities Substitution: Recall the trigonometric identities for tangent and cotangent in terms of sine and cosine:\newlinetan(α)=sin(α)cos(α)\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} and cot(α)=cos(α)sin(α)\cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)}.\newlineSubstitute these identities into the left side of the equation.
  2. Combine Terms: The left side of the equation becomes: (sin(α)cos(α)+cos(α)sin(α))/(sin(α)cos(α)cos(α)sin(α)).(\frac{\sin(\alpha)}{\cos(\alpha)} + \frac{\cos(\alpha)}{\sin(\alpha)}) / (\frac{\sin(\alpha)}{\cos(\alpha)} - \frac{\cos(\alpha)}{\sin(\alpha)}). Combine the terms over a common denominator.
  3. Simplify Using Pythagorean Identity: After combining terms, the left side simplifies to: (sin2(α)+cos2(α))/(sin(α)cos(α))/((sin2(α)cos2(α))/(sin(α)cos(α))).(\sin^2(\alpha) + \cos^2(\alpha)) / (\sin(\alpha)\cos(\alpha)) / ((\sin^2(\alpha) - \cos^2(\alpha)) / (\sin(\alpha)\cos(\alpha))). Simplify the numerator and denominator using the Pythagorean identity sin2(α)+cos2(α)=1\sin^2(\alpha) + \cos^2(\alpha) = 1.
  4. Complex Fraction Simplification: The left side now simplifies to: 1(sin(α)cos(α))/(sin2(α)cos2(α)sin(α)cos(α))\frac{1}{(\sin(\alpha)\cos(\alpha))} / \left(\frac{\sin^2(\alpha) - \cos^2(\alpha)}{\sin(\alpha)\cos(\alpha)}\right). Simplify the complex fraction by multiplying the numerator and denominator by sin(α)cos(α)\sin(\alpha)\cos(\alpha).
  5. Double Angle Identity Substitution: The left side simplifies further to: \newline1sin2(α)cos2(α)\frac{1}{\sin^2(\alpha) - \cos^2(\alpha)}.\newlineNow, recall the double angle identity for sine: sin2(α)=1cos(2α)2\sin^2(\alpha) = \frac{1 - \cos(2\alpha)}{2}.\newlineSubstitute this identity into the denominator.
  6. Use Pythagorean Identity for Cosine: The left side becomes: \newline1(1cos(2α)2cos2(α))\frac{1}{\left(\frac{1 - \cos(2\alpha)}{2} - \cos^2(\alpha)\right)}.\newlineNow, use the Pythagorean identity cos2(α)=1sin2(α)\cos^2(\alpha) = 1 - \sin^2(\alpha) to express cos2(α)\cos^2(\alpha) in terms of sin2(α)\sin^2(\alpha).
  7. Denominator Simplification: The left side now becomes: \newline1(1cos(2α)2(1sin2(α)))\frac{1}{\left(\frac{1 - \cos(2\alpha)}{2} - (1 - \sin^2(\alpha))\right)}.\newlineSimplify the denominator.
  8. Final Simplification: After simplifying, the left side is: \newline1(1cos(2α)2+2sin2(α)2)\frac{1}{\left(\frac{1 - \cos(2\alpha) - 2 + 2\sin^2(\alpha)}{2}\right)}.\newlineThis simplifies to: \newline1(2sin2(α)1cos(2α)2)\frac{1}{\left(\frac{2\sin^2(\alpha) - 1 - \cos(2\alpha)}{2}\right)}.
  9. Comparison with Right Side: Now, we need to show that the right side of the original equation, 12sin2(α)1\frac{1}{2\sin^2(\alpha) - 1}, is equal to the left side.\newlineHowever, we have an extra term, cos(2α)2-\frac{\cos(2\alpha)}{2}, in the denominator of the left side that does not appear in the right side.\newlineThis indicates that there might be a mistake in our simplification or the identity does not hold true.

More problems from Sin, cos, and tan of special angles