Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.
(sqrtu-3)/(u-9)×(sqrtu+3)/(sqrtu+3)

Solve.\newlineu3u9×u+3u+3 \frac{\sqrt{u}-3}{u-9} \times \frac{\sqrt{u}+3}{\sqrt{u}+3}

Full solution

Q. Solve.\newlineu3u9×u+3u+3 \frac{\sqrt{u}-3}{u-9} \times \frac{\sqrt{u}+3}{\sqrt{u}+3}
  1. Write Problem: Write down the problem.\newlineWe have: (u3)/(u9)×(u+3)/(u+3)(\sqrt{u} - 3) / (u - 9) \times (\sqrt{u} + 3) / (\sqrt{u} + 3)
  2. Notice Common Factor: Notice that (u+3)(\sqrt{u} + 3) appears in both the numerator and the denominator of the second fraction.\newlineWe can simplify the expression by canceling out (u+3)(\sqrt{u} + 3) from the numerator and the denominator.\newline(\sqrt{u} - \(3) / (u - 99) \times (\sqrt{u} + 33) / (\sqrt{u} + 33) = (\sqrt{u} - 33) / (u - 99) \times 11
  3. Cancel Common Factor: After canceling, we are left with the following expression:\newline(u3)/(u9)(\sqrt{u} - 3) / (u - 9)\newlineThis is the simplified form of the original expression, as there is nothing more to cancel or simplify.