Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
(sqrt5-sqrt2)^(2)

Simplify.\newline(52)2 (\sqrt{5}-\sqrt{2})^{2}

Full solution

Q. Simplify.\newline(52)2 (\sqrt{5}-\sqrt{2})^{2}
  1. Square the expression: We need to square the expression 52\sqrt{5} - \sqrt{2}. Squaring a binomial means multiplying the binomial by itself.(52)2=(52)×(52)\left(\sqrt{5} - \sqrt{2}\right)^2 = \left(\sqrt{5} - \sqrt{2}\right) \times \left(\sqrt{5} - \sqrt{2}\right)
  2. Apply distributive property: Now we will apply the distributive property (also known as the FOIL method for binomials) to multiply the two binomials. \newline(52)×(52)=5×55×22×5+2×2(\sqrt{5} - \sqrt{2}) \times (\sqrt{5} - \sqrt{2}) = \sqrt{5} \times \sqrt{5} - \sqrt{5} \times \sqrt{2} - \sqrt{2} \times \sqrt{5} + \sqrt{2} \times \sqrt{2}
  3. Simplify terms: Next, we simplify each term. The square root of a number, squared, is just the number itself. So, 5×5=5\sqrt{5} \times \sqrt{5} = 5 and 2×2=2\sqrt{2} \times \sqrt{2} = 2. The middle terms are like terms and can be combined.55×22×5+25 - \sqrt{5} \times \sqrt{2} - \sqrt{2} \times \sqrt{5} + 2
  4. Combine like terms: Since 5×2\sqrt{5} \times \sqrt{2} is the same as 5×2\sqrt{5 \times 2}, we can simplify the middle terms.\newline52×5×2+25 - 2 \times \sqrt{5 \times 2} + 2
  5. Final result: Now we combine the like terms, which are the constants 55 and 22.5+22×105 + 2 - 2 \times \sqrt{10}
  6. Final result: Now we combine the like terms, which are the constants 55 and 22.5+22×105 + 2 - 2 \times \sqrt{10}Adding the constants together gives us:72×107 - 2 \times \sqrt{10}