Isolate square root term: Step 1: Simplify the equation by isolating the square root term.Original equation: 2(9x2+x−7)+5=3xSubtract 5 from both sides:2(9x2+x−7)=3x−5
Divide to isolate square root: Step 2: Divide both sides by 2 to further isolate the square root.22(9x2+x−7)=23x−59x2+x−7=23x−5
Eliminate square root: Step 3: Square both sides to eliminate the square root.(9x2+x−7)2=(23x−5)29x2+x−7=4(3x−5)2
Expand and simplify: Step 4: Expand and simplify the right side of the equation.9x2+x−7=49x2−30x+25Multiply everything by 4 to clear the fraction:4(9x2+x−7)=9x2−30x+2536x2+4x−28=9x2−30x+25
Form quadratic equation: Step 5: Bring all terms to one side to form a quadratic equation.36x2+4x−28−9x2+30x−25=027x2+34x−53=0
Use quadratic formula: Step 6: Use the quadratic formula to solve for x.x=2a−b±b2−4acHere, a=27, b=34, c=−53x=2⋅27−34±342−4⋅27⋅(−53)x=54−34±1156+5724x=54−34±6880
Calculate discriminant: Step 7: Calculate the discriminant and simplify. 6880≈82.96x=54−34±82.96x1=5448.96≈0.907x2=54−116.96≈−2.166
More problems from Evaluate absolute value expressions