Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(sin^(2)u)/(cos^(2)u)

sin2ucos2u \frac{\sin ^{2} u}{\cos ^{2} u}

Full solution

Q. sin2ucos2u \frac{\sin ^{2} u}{\cos ^{2} u}
  1. Recognize trigonometric identity: Recognize the trigonometric identity.\newlineThe expression sin2ucos2u\frac{\sin^{2}u}{\cos^{2}u} is the definition of the tangent squared function, written as tan2(u)\tan^2(u).
  2. Apply identity: Apply the trigonometric identity.\newlineSince tan(u)=sin(u)cos(u)\tan(u) = \frac{\sin(u)}{\cos(u)}, squaring both sides gives us tan2(u)=(sin(u)cos(u))2=sin2(u)cos2(u)\tan^2(u) = \left(\frac{\sin(u)}{\cos(u)}\right)^2 = \frac{\sin^2(u)}{\cos^2(u)}.
  3. Write final answer: Write the final answer.\newlineThe simplified, rationalized form of (sin2u)/(cos2u)(\sin^{2}u)/(\cos^{2}u) is tan2(u)\tan^2(u).

More problems from Sin, cos, and tan of special angles