Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(sec2x1)/(secx1)\left(\sec^{2}x-1\right)/\left(\sec x-1\right)

Full solution

Q. (sec2x1)/(secx1)\left(\sec^{2}x-1\right)/\left(\sec x-1\right)
  1. Pythagorean Identity Recognition: We recognize that the numerator sec2x1\sec^2 x - 1 is a Pythagorean identity which can be rewritten as tan2x\tan^2 x.\newlinesec2x1=tan2x\sec^2 x - 1 = \tan^2 x
  2. Rewriting with Identity: Now we rewrite the original expression using the identity from step 11.\newline(sec2x1)/(secx1)=(tan2x)/(secx1)(\sec^{2}x - 1) / (\sec x - 1) = (\tan^{2}x) / (\sec x - 1)
  3. Factoring Numerator: We factor the numerator tan2x\tan^{2}x as tanxtanx\tan x \cdot \tan x.\newline(tan2x)/(secx1)=(tanxtanx)/(secx1)(\tan^{2}x) / (\sec x - 1) = (\tan x \cdot \tan x) / (\sec x - 1)
  4. Substitution of Trigonometric Functions: We recognize that tanx\tan x is equal to sinxcosx\frac{\sin x}{\cos x} and secx\sec x is equal to 1cosx\frac{1}{\cos x}. So we can rewrite tanx\tan x as sinxcosx\frac{\sin x}{\cos x} and secx\sec x as 1cosx\frac{1}{\cos x}. tanxtanxsecx1\frac{\tan x \cdot \tan x}{\sec x - 1} = (sinxcosx)(sinxcosx)1cosx1\frac{(\frac{\sin x}{\cos x}) \cdot (\frac{\sin x}{\cos x})}{\frac{1}{\cos x} - 1}
  5. Simplifying Fractions: We simplify the expression by multiplying both the numerator and the denominator by cosx\cos x to get rid of the fractions.(sinxcosxsinxcosx)/(1cosx1)=sinxsinx1cosx\left(\frac{\sin x}{\cos x} \cdot \frac{\sin x}{\cos x}\right) / \left(\frac{1}{\cos x} - 1\right) = \frac{\sin x \cdot \sin x}{1 - \cos x}
  6. Recognizing Trigonometric Identity: We recognize that sinxsinx\sin x \cdot \sin x can be written as sin2x\sin^{2}x.\newline(sinxsinx)/(1cosx)=sin2x/(1cosx)(\sin x \cdot \sin x) / (1 - \cos x) = \sin^{2}x / (1 - \cos x)
  7. Final Simplified Expression: We now have a simplified expression for the original problem. sin2x1cosx\frac{\sin^{2}x}{1 - \cos x}

More problems from Simplify radical expressions involving fractions