Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify: (sec^(2)theta)/(sec^(2)theta-1)=csc^(2)theta

Simplify: sec2θsec2θ1=csc2θ\frac{\sec^{2}\theta}{\sec^{2}\theta-1}=\csc^{2}\theta

Full solution

Q. Simplify: sec2θsec2θ1=csc2θ\frac{\sec^{2}\theta}{\sec^{2}\theta-1}=\csc^{2}\theta
  1. Recognize identity: Recognize the trigonometric identity: sec2θ=1+tan2θ\sec^{2}\theta = 1 + \tan^{2}\theta
  2. Substitute into equation: Substitute the identity into the equation: sec2θsec2θ1=1+tan2θ1+tan2θ1\frac{\sec^{2}\theta}{\sec^{2}\theta - 1} = \frac{1 + \tan^{2}\theta}{1 + \tan^{2}\theta - 1}
  3. Simplify expression: Simplify the expression:\newline(1+tan2θ)/(tan2θ)=1/(sin2θ/cos2θ)(1 + \tan^{2}\theta)/(\tan^{2}\theta) = 1/(\sin^{2}\theta/\cos^{2}\theta)
  4. Further simplify using cotangent: Further simplify using the identity for cotangent: cot2θ=cos2θsin2θ\cot^{2}\theta = \frac{\cos^{2}\theta}{\sin^{2}\theta}
  5. Use Pythagorean identity: Use the Pythagorean identity for cosecant: csc2θ=1sin2θ\csc^2\theta = \frac{1}{\sin^2\theta}
  6. Substitute back to find relationship: Substitute back to find the relationship:\newline1+cot2θ=csc2θ1 + \cot^{2}\theta = \csc^{2}\theta

More problems from Sin, cos, and tan of special angles