Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(root(4)(y)*sqrty)/(root(3)(y))
If the given expression is equal to 
y^(a) for all positive values of 
y, what is the value of 
a ?

y4yy3 \frac{\sqrt[4]{y} \cdot \sqrt{y}}{\sqrt[3]{y}} \newlineIf the given expression is equal to ya y^{a} for all positive values of y y , what is the value of a a ?

Full solution

Q. y4yy3 \frac{\sqrt[4]{y} \cdot \sqrt{y}}{\sqrt[3]{y}} \newlineIf the given expression is equal to ya y^{a} for all positive values of y y , what is the value of a a ?
  1. Expressing terms with exponents: We need to express the given expression in terms of yy with exponents to find the value of aa. Let's start by expressing each term with exponents.
  2. Simplifying the expression: The fourth root of y is y14y^{\frac{1}{4}}, and the square root of y is y12y^{\frac{1}{2}}. The cube root of y is y13y^{\frac{1}{3}}. So the expression becomes (y14y12)/y13(y^{\frac{1}{4}} \cdot y^{\frac{1}{2}}) / y^{\frac{1}{3}}.
  3. Adding exponents: Using the properties of exponents, when we multiply terms with the same base, we add the exponents. So y14×y12y^{\frac{1}{4}} \times y^{\frac{1}{2}} becomes y14+12y^{\frac{1}{4} + \frac{1}{2}}.
  4. Dividing terms with the same base: Adding the exponents 14\frac{1}{4} and 12\frac{1}{2}, we get y(14+24)y^{\left(\frac{1}{4} + \frac{2}{4}\right)} which simplifies to y34y^{\frac{3}{4}}.
  5. Finding a common denominator: Now we have y34y^{\frac{3}{4}} divided by y13y^{\frac{1}{3}}. Using the properties of exponents, when we divide terms with the same base, we subtract the exponents. So y34/y13y^{\frac{3}{4}} / y^{\frac{1}{3}} becomes y3413y^{\frac{3}{4} - \frac{1}{3}}.
  6. Subtracting exponents: To subtract the exponents, we need a common denominator. The common denominator of 44 and 33 is 1212. So we convert 34\frac{3}{4} to 912\frac{9}{12} and 13\frac{1}{3} to 412\frac{4}{12}.
  7. Final simplification: Now we subtract the exponents: 912412\frac{9}{12} - \frac{4}{12}, which equals 512\frac{5}{12}. So y34/y13y^{\frac{3}{4}} / y^{\frac{1}{3}} simplifies to y512y^{\frac{5}{12}}.
  8. Value of a: Therefore, the given expression y4y/y3\sqrt[4]{y}\cdot\sqrt{y}/\sqrt[3]{y} simplifies to y512y^{\frac{5}{12}}. This means that a=512a = \frac{5}{12}.

More problems from Find trigonometric ratios using multiple identities