Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
k
(
t
)
=
10
t
−
19
k
(
−
7
)
=
\begin{array}{l}k(t)=10 t-19 \\ k(-7)=\end{array}
k
(
t
)
=
10
t
−
19
k
(
−
7
)
=
View step-by-step help
Home
Math Problems
Grade 6
Multiply using the distributive property
Full solution
Q.
k
(
t
)
=
10
t
−
19
k
(
−
7
)
=
\begin{array}{l}k(t)=10 t-19 \\ k(-7)=\end{array}
k
(
t
)
=
10
t
−
19
k
(
−
7
)
=
Substitute
t
t
t
with
−
7
-7
−
7
:
To find the value of
k
(
−
7
)
k(-7)
k
(
−
7
)
, we need to substitute
t
t
t
with
−
7
-7
−
7
in the function
k
(
t
)
=
10
t
−
19
k(t) = 10t - 19
k
(
t
)
=
10
t
−
19
.
\newline
k
(
−
7
)
=
10
(
−
7
)
−
19
k(-7) = 10(-7) - 19
k
(
−
7
)
=
10
(
−
7
)
−
19
Perform multiplication:
Now, we perform the multiplication
10
10
10
times
−
7
-7
−
7
.
\newline
10
(
−
7
)
=
−
70
10(-7) = -70
10
(
−
7
)
=
−
70
Subtract
19
19
19
:
Next, we subtract
19
19
19
from
−
70
-70
−
70
to get the value of
k
(
−
7
)
k(-7)
k
(
−
7
)
.
\newline
k
(
−
7
)
=
−
70
−
19
k(-7) = -70 - 19
k
(
−
7
)
=
−
70
−
19
Perform subtraction:
Finally, we perform the subtraction to find the value of
k
(
−
7
)
k(-7)
k
(
−
7
)
.
k
(
−
7
)
=
−
70
−
19
=
−
89
k(-7) = -70 - 19 = -89
k
(
−
7
)
=
−
70
−
19
=
−
89
More problems from Multiply using the distributive property
Question
z
=
6.2
+
37
i
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=6.2+37 i \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
6.2
+
37
i
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
4.1
i
+
85
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=4.1 i+85 \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
4.1
i
+
85
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
6
−
3
i
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=6-3 i \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
6
−
3
i
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
14
i
+
12.1
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=14 i+12.1 \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
14
i
+
12.1
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
log
16
1
2
=
\log _{16} \frac{1}{2}=
lo
g
16
2
1
=
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
−
4
sin
(
2
x
−
7
)
+
3
?
y
=
□
\begin{array}{l} y=-4 \sin (2 x-7)+3 ? \\ y=\square \end{array}
y
=
−
4
sin
(
2
x
−
7
)
+
3
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
−
5
cos
(
2
π
x
+
1
)
−
10
?
y
=
□
\begin{array}{l} y=-5 \cos (2 \pi x+1)-10 ? \\ y=\square \end{array}
y
=
−
5
cos
(
2
π
x
+
1
)
−
10
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
sin
(
3
x
+
5
)
?
y
=
□
\begin{array}{l} y=\sin (3 x+5) ? \\ y=\square \end{array}
y
=
sin
(
3
x
+
5
)?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
10
cos
(
6
x
−
1
)
−
4
?
y
=
□
\begin{array}{l} y=10 \cos (6 x-1)-4 ? \\ y=\square \end{array}
y
=
10
cos
(
6
x
−
1
)
−
4
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
cos
(
2
π
3
x
)
+
2
?
y
=
□
\begin{array}{l} y=\cos \left(\frac{2 \pi}{3} x\right)+2 ? \\ y=\square \end{array}
y
=
cos
(
3
2
π
x
)
+
2
?
y
=
□
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant