Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If cos(θ)=817 \cos(\theta) = \frac{8}{17} and 0^\circ < \theta < 90^\circ , what is sec(θ) \sec(\theta) ? \newlineWrite your answer in simplified, rationalized form. \newlinesec(θ)= \sec(\theta) = ______

Full solution

Q. If cos(θ)=817 \cos(\theta) = \frac{8}{17} and 0<θ<90 0^\circ < \theta < 90^\circ , what is sec(θ) \sec(\theta) ? \newlineWrite your answer in simplified, rationalized form. \newlinesec(θ)= \sec(\theta) = ______
  1. Identify Relation: Identify the relation between cos(θ)\cos(\theta) and sec(θ)\sec(\theta).\newlinesec(θ)\sec(\theta) is the reciprocal of cos(θ)\cos(\theta).\newlinesec(θ)=1cos(θ)\sec(\theta) = \frac{1}{\cos(\theta)}
  2. Reciprocal Relation: We know:\newlinesec(θ)=1cos(θ)\sec(\theta) = \frac{1}{\cos(\theta)}\newlinecos(θ)=817\cos(\theta) = \frac{8}{17}\newlineIdentify the equation of sec(θ)\sec(\theta) after substituting 817\frac{8}{17} for cos(θ)\cos(\theta).\newlinesec(θ)=1cos(θ)\sec(\theta) = \frac{1}{\cos(\theta)}\newlinesec(θ)=1(817)\sec(\theta) = \frac{1}{(\frac{8}{17})}
  3. Substitute Cosine: sec(θ)=1/(8/17)\sec(\theta) = 1 / (8 / 17)\newlineFind the value of sec(θ)\sec(\theta).\newlinesec(θ)=1/(8/17)\sec(\theta) = 1 / (8 / 17)\newlinesec(θ)=1×(17/8)\sec(\theta) = 1 \times (17 / 8)\newlinesec(θ)=17/8\sec(\theta) = 17/8

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity