Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[{[h(1)=-5],[h(n)=h(n-1)+1.8]:}],[h(3)=◻]:}

{h(1)=5h(n)=h(n1)+1.8h(3)= \begin{array}{l}\left\{\begin{array}{l}h(1)=-5 \\ h(n)=h(n-1)+1.8\end{array}\right. \\ h(3)=\square\end{array}

Full solution

Q. {h(1)=5h(n)=h(n1)+1.8h(3)= \begin{array}{l}\left\{\begin{array}{l}h(1)=-5 \\ h(n)=h(n-1)+1.8\end{array}\right. \\ h(3)=\square\end{array}
  1. Question Prompt: The question prompt is: "What is the value of h(3)h(3)?"
  2. Given Initial Condition: We are given the initial condition h(1)=5h(1) = -5 and the recursive formula h(n)=h(n1)+1.8h(n) = h(n-1) + 1.8. To find h(3)h(3), we first need to find h(2)h(2) using the recursive formula.
  3. Finding h(2)h(2): Using the recursive formula h(n)=h(n1)+1.8h(n) = h(n-1) + 1.8, we substitute nn with 22 to find h(2)h(2):
    h(2)=h(21)+1.8h(2) = h(2-1) + 1.8
    h(2)=h(1)+1.8h(2) = h(1) + 1.8
    h(2)=5+1.8h(2) = -5 + 1.8
    h(2)=3.2h(2) = -3.2
  4. Finding h(3)h(3): Now that we have h(2)h(2), we can use it to find h(3)h(3) using the same recursive formula:\newlineh(3)=h(31)+1.8h(3) = h(3-1) + 1.8\newlineh(3)=h(2)+1.8h(3) = h(2) + 1.8\newlineh(3)=3.2+1.8h(3) = -3.2 + 1.8\newlineh(3)=1.4h(3) = -1.4

More problems from Evaluate recursive formulas for sequences