Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[{[g(1)=50],[g(n)=8-g(n-1)]:}],[g(2)=◻]:}

{g(1)=50g(n)=8g(n1)g(2)= \begin{array}{l}\left\{\begin{array}{l}g(1)=50 \\ g(n)=8-g(n-1)\end{array}\right. \\ g(2)=\square\end{array}

Full solution

Q. {g(1)=50g(n)=8g(n1)g(2)= \begin{array}{l}\left\{\begin{array}{l}g(1)=50 \\ g(n)=8-g(n-1)\end{array}\right. \\ g(2)=\square\end{array}
  1. Given initial condition and recursive formula: We are given the initial condition and the recursive formula for the sequence:\newlineg(1)=50g(1) = 50\newlineg(n)=8g(n1)g(n) = 8 - g(n - 1)\newlineTo find g(2)g(2), we will use the recursive formula with n=2n = 2.
  2. Substituting n=2n = 2 into the recursive formula: Substitute n=2n = 2 into the recursive formula:\newlineg(2)=8g(21)g(2) = 8 - g(2 - 1)\newlineg(2)=8g(1)g(2) = 8 - g(1)\newlineSince we know g(1)=50g(1) = 50, we can substitute that value in:\newlineg(2)=850g(2) = 8 - 50
  3. Substituting g(1)g(1) into the equation: Perform the subtraction to find g(2)g(2):g(2)=850g(2) = 8 - 50g(2)=42g(2) = -42
  4. Performing the subtraction: We have found the value of g(2)g(2):g(2)=42g(2) = -42

More problems from Evaluate recursive formulas for sequences