Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[{[g(1)=-5],[g(2)=3]:}],[g(n)=g(n-2)+g(n-1)]:}

{g(1)=5g(2)=3g(n)=g(n2)+g(n1)g(3)= \begin{array}{l}\left\{\begin{array}{l}g(1)=-5 \\ g(2)=3 \\ g(n)=g(n-2)+g(n-1)\end{array}\right. \\ g(3)=\square\end{array}

Full solution

Q. {g(1)=5g(2)=3g(n)=g(n2)+g(n1)g(3)= \begin{array}{l}\left\{\begin{array}{l}g(1)=-5 \\ g(2)=3 \\ g(n)=g(n-2)+g(n-1)\end{array}\right. \\ g(3)=\square\end{array}
  1. Given Information: We are given:\newlineg(11) = 5-5\newlineg(22) = 33\newlineAnd the recursive formula:\newlineg(n) = g(n2-2) + g(n1-1)\newlineWe need to find the value of g(33).\newlineUsing the recursive formula, we substitute n with 33:\newlineg(33) = g(332-2) + g(331-1)\newlineg(33) = g(11) + g(22)\newlineg(33) = 5-5 + 33\newlineg(33) = 2-2
  2. Finding g(3)g(3): Now we need to find the value of g(4)g(4).\newlineUsing the recursive formula again, we substitute nn with 44:\newlineg(4)=g(42)+g(41)g(4) = g(4-2) + g(4-1)\newlineg(4)=g(2)+g(3)g(4) = g(2) + g(3)\newlineg(4)=3+(2)g(4) = 3 + (-2)\newlineg(4)=1g(4) = 1

More problems from Evaluate recursive formulas for sequences