Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[{[g(1)=4],[g(2)=-3],[g(n)=g(n-2)*g(n-1)]:}],[g(3)=]:}

{g(1)=4g(2)=3g(n)=g(n2)g(n1)g(3)= \begin{array}{l}\left\{\begin{array}{l}g(1)=4 \\ g(2)=-3 \\ g(n)=g(n-2) \cdot g(n-1)\end{array}\right. \\ g(3)=\end{array}

Full solution

Q. {g(1)=4g(2)=3g(n)=g(n2)g(n1)g(3)= \begin{array}{l}\left\{\begin{array}{l}g(1)=4 \\ g(2)=-3 \\ g(n)=g(n-2) \cdot g(n-1)\end{array}\right. \\ g(3)=\end{array}
  1. Given initial conditions: We are given the initial conditions for the sequence:\newlineg(11) = 44\newlineg(22) = 3-3\newlineAnd the recursive formula:\newlineg(nn) = g(n2n-2) * g(n1n-1)\newlineWe need to find the value of g(33).
  2. Recursive formula: Using the recursive formula, we can find g(3)g(3) by multiplying g(1)g(1) and g(2)g(2):
    g(3)=g(1)×g(2)g(3) = g(1) \times g(2)
    g(3)=4×(3)g(3) = 4 \times (-3)
    g(3)=12g(3) = -12
  3. Finding g(3)g(3): We have calculated the value of g(3)g(3) using the given recursive formula and initial conditions without any mathematical errors.

More problems from Evaluate recursive formulas for sequences