Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{[g(1)=-29],[g(n)=g(n-1)*(-4)]:}
Find an explicit formula for 
g(n).

g(n)=

{g(1)=29,g(n)=g(n1)(4)\begin{cases} g(1)=-29, g(n)=g(n-1)\cdot(-4) \end{cases} Find an explicit formula for g(n)g(n). g(n)=g(n)=

Full solution

Q. {g(1)=29,g(n)=g(n1)(4)\begin{cases} g(1)=-29, g(n)=g(n-1)\cdot(-4) \end{cases} Find an explicit formula for g(n)g(n). g(n)=g(n)=
  1. Given Information: We are given that g(1)=29g(1) = -29 and that g(n)=g(n1)×(4)g(n) = g(n-1) \times (-4) for n > 1. This is a recursive definition of the function gg. To find an explicit formula, we need to determine how g(n)g(n) is related to the initial value g(1)g(1) when nn increases.
  2. Identifying Pattern: Let's look at the first few terms to see if we can identify a pattern. We know g(1)=29g(1) = -29. Using the recursive formula:\newlineg(2)=g(1)×(4)=29×(4)=116g(2) = g(1) \times (-4) = -29 \times (-4) = 116.\newlineg(3)=g(2)×(4)=116×(4)=464g(3) = g(2) \times (-4) = 116 \times (-4) = -464.
  3. Geometric Sequence Analysis: We can see that each term is 4-4 times the previous term. This is a geometric sequence with the first term a=g(1)=29a = g(1) = -29 and common ratio r=4r = -4. The nnth term of a geometric sequence is given by the formula ar(n1)a \cdot r^{(n-1)}.
  4. Explicit Formula: Substituting the values of aa and rr into the formula for the nnth term, we get:\newlineg(n)=29(4)(n1)g(n) = -29 \cdot (-4)^{(n-1)}.\newlineThis is the explicit formula for g(n)g(n).

More problems from Write variable expressions for geometric sequences