Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{[g(1)=14],[g(n)=g(n-1)-4]:}
Find an explicit formula for 
g(n).

g(n)=

{g(1)=14g(n)=g(n1)4 \left\{\begin{array}{l} g(1)=14 \\ g(n)=g(n-1)-4 \end{array}\right. \newlineFind an explicit formula for g(n) g(n) .\newlineg(n)= g(n)=

Full solution

Q. {g(1)=14g(n)=g(n1)4 \left\{\begin{array}{l} g(1)=14 \\ g(n)=g(n-1)-4 \end{array}\right. \newlineFind an explicit formula for g(n) g(n) .\newlineg(n)= g(n)=
  1. Initialize g(1)g(1): g(1)=14g(1) = 14, and g(n)=g(n1)4g(n) = g(n-1) - 4. To find g(2)g(2), we substitute n=2n=2 into the recursive formula.\newlineg(2)=g(21)4=g(1)4=144=10g(2) = g(2-1) - 4 = g(1) - 4 = 14 - 4 = 10.
  2. Find g(2)g(2): Now, let's find g(3)g(3) to see the pattern.\newlineg(3)=g(31)4=g(2)4=104=6g(3) = g(3-1) - 4 = g(2) - 4 = 10 - 4 = 6.
  3. Find g(3)g(3): We can see that each step we subtract 44 from the previous g(n)g(n). So, for g(n)g(n), we subtract 44 (n1)(n-1) times from g(1)g(1).\newlineg(n)=g(1)4(n1)g(n) = g(1) - 4(n-1).
  4. General formula for g(n)g(n): Substitute g(1)=14g(1) = 14 into the formula.\newlineg(n)=144(n1)g(n) = 14 - 4(n-1).
  5. Substitute g(1)g(1): Simplify the formula.g(n)=144n+4.g(n) = 14 - 4n + 4.
  6. Simplify the formula: Combine like terms. g(n)=184ng(n) = 18 - 4n.

More problems from Write a formula for an arithmetic sequence