Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{[g(1)=0],[g(n)=g(n-1)+n]:}

g(2)=

{g(1)=0g(n)=g(n1)+ng(2)= \begin{array}{l}\left\{\begin{array}{l}g(1)=0 \\ g(n)=g(n-1)+n\end{array}\right. \\ g(2)=\square\end{array}

Full solution

Q. {g(1)=0g(n)=g(n1)+ng(2)= \begin{array}{l}\left\{\begin{array}{l}g(1)=0 \\ g(n)=g(n-1)+n\end{array}\right. \\ g(2)=\square\end{array}
  1. Recursive function definition: The given recursive function is defined as follows:\newlineg(1)=0 g(1) = 0 \newlineg(n)=g(n1)+n g(n) = g(n-1) + n \newlineWe need to find the value of g(2) g(2) .\newlineSince we know g(1) g(1) , we can use it to find g(2) g(2) by substituting n=2 n = 2 into the recursive formula.
  2. Finding g(22): Using the recursive formula:\newlineg(2)=g(21)+2 g(2) = g(2-1) + 2 \newlineg(2)=g(1)+2 g(2) = g(1) + 2 \newlineWe know that g(1)=0 g(1) = 0 , so we substitute that value in:\newlineg(2)=0+2 g(2) = 0 + 2 \newlineg(2)=2 g(2) = 2

More problems from Evaluate recursive formulas for sequences