Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[f(x)=(2-x)/(x+1)],[g(x)=18-3x]:}
Write 
(f@g)(x) as an expression in terms of 
x.

(f@g)(x)=

f(x)=2xx+1g(x)=183x \begin{array}{l} f(x)=\frac{2-x}{x+1} \\ g(x)=18-3 x \end{array} \newlineWrite (fg)(x) (f \circ g)(x) as an expression in terms of x x .\newline(fg)(x)= (f \circ g)(x)=

Full solution

Q. f(x)=2xx+1g(x)=183x \begin{array}{l} f(x)=\frac{2-x}{x+1} \\ g(x)=18-3 x \end{array} \newlineWrite (fg)(x) (f \circ g)(x) as an expression in terms of x x .\newline(fg)(x)= (f \circ g)(x)=
  1. Understanding f@g)(x)</b>First,letsunderstandwhat$f@g)(x) means.Thenotation$f@g)(x) representsthecompositionofthefunctions$ff@g)(x)\:</b> First, let's understand what \$f@g)(x)\ means. The notation \$f@g)(x)\ represents the composition of the functions \$f and gg, which means we need to apply gg first and then apply ff to the result of gg. In other words, we need to substitute g(x)g(x) into f(x)f(x) wherever there is an xx.
  2. Expressions for f(x)f(x) and g(x)g(x): Now let's write down the expressions for f(x)f(x) and g(x)g(x) to see what we are working with:\newlinef(x)=2xx+1f(x) = \frac{2-x}{x+1}\newlineg(x)=183xg(x) = 18-3x\newlineWe will substitute g(x)g(x) into f(x)f(x) in place of xx.
  3. Substituting g(x)g(x) into f(x)f(x): Substitute g(x)g(x) into f(x)f(x):
    (fg)(x)=f(g(x))=f(183x)=2(183x)(183x)+1(f\circ g)(x) = f(g(x)) = f(18-3x) = \frac{2 - (18-3x)}{(18-3x) + 1}
  4. Simplifying the numerator and denominator: Now, simplify the numerator and the denominator of the fraction:\newlineNumerator: 2(183x)=218+3x=3x162 - (18 - 3x) = 2 - 18 + 3x = 3x - 16\newlineDenominator: (183x)+1=183x+1=193x(18 - 3x) + 1 = 18 - 3x + 1 = 19 - 3x\newlineSo, (f@g)(x)=3x16193x(f@g)(x) = \frac{3x - 16}{19 - 3x}

More problems from Domain and range of absolute value functions: equations