Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[f^(')(x)=16x^(3)+6x-7" and "],[f(5)=2500.]:}

f(-1)=

f(x)=16x3+6x7 and f(5)=2500. \begin{array}{l}f^{\prime}(x)=16 x^{3}+6 x-7 \text { and } f(5)=2500 .\end{array} \newlinef(1)= f(-1)=

Full solution

Q. f(x)=16x3+6x7 and f(5)=2500. \begin{array}{l}f^{\prime}(x)=16 x^{3}+6 x-7 \text { and } f(5)=2500 .\end{array} \newlinef(1)= f(-1)=
  1. Integrate f(x)f'(x) to find f(x)f(x): To find f(1)f(-1), we need to evaluate the function ff at x=1x = -1. However, we are given f(x)f'(x), which is the derivative of f(x)f(x), not the function itself. Since we cannot directly find f(1)f(-1) from f(x)f'(x), we need to first find the general form of f(x)f(x) by integrating f(x)f'(x). Let's integrate f(x)f'(x) to find f(x)f(x).
  2. Find Constant CC: The integral of f(x)=16x3+6x7f'(x) = 16x^3 + 6x - 7 is f(x)=164x4+62x27x+Cf(x) = \frac{16}{4}x^4 + \frac{6}{2}x^2 - 7x + C, where CC is the constant of integration.\newlineSimplifying the integral, we get f(x)=4x4+3x27x+Cf(x) = 4x^4 + 3x^2 - 7x + C.
  3. Calculate C value: We are given that f(5)=2500f(5) = 2500. We can use this information to find the value of the constant CC. Plugging x=5x = 5 into f(x)f(x), we get 2500=4(5)4+3(5)27(5)+C2500 = 4(5)^4 + 3(5)^2 - 7(5) + C.
  4. Substitute x=1x = -1: Calculating the values, we have 2500=4(625)+3(25)35+C2500 = 4(625) + 3(25) - 35 + C. This simplifies to 2500=2500+7535+C2500 = 2500 + 75 - 35 + C.
  5. Evaluate f(1)f(-1): Now, we solve for CC: 2500=2500+40+C2500 = 2500 + 40 + C.\newlineSubtracting 25002500 and 4040 from both sides, we get C=2500250040C = 2500 - 2500 - 40.
  6. Evaluate f(1)f(-1): Now, we solve for CC: 2500=2500+40+C2500 = 2500 + 40 + C. Subtracting 25002500 and 4040 from both sides, we get C=2500250040C = 2500 - 2500 - 40. Calculating the value of CC, we find that C=40C = -40. Now we have the complete function f(x)=4x4+3x27x40f(x) = 4x^4 + 3x^2 - 7x - 40.
  7. Evaluate f(1)f(-1): Now, we solve for CC: 2500=2500+40+C2500 = 2500 + 40 + C. Subtracting 25002500 and 4040 from both sides, we get C=2500250040C = 2500 - 2500 - 40. Calculating the value of CC, we find that C=40C = -40. Now we have the complete function f(x)=4x4+3x27x40f(x) = 4x^4 + 3x^2 - 7x - 40. Finally, we can find f(1)f(-1) by substituting CC00 into the function CC11. CC22.
  8. Evaluate f(1)f(-1): Now, we solve for CC: 2500=2500+40+C2500 = 2500 + 40 + C. Subtracting 25002500 and 4040 from both sides, we get C=2500250040C = 2500 - 2500 - 40. Calculating the value of CC, we find that C=40C = -40. Now we have the complete function f(x)=4x4+3x27x40f(x) = 4x^4 + 3x^2 - 7x - 40. Finally, we can find f(1)f(-1) by substituting CC00 into the function CC11. CC22. Calculating the values, we get CC33. This simplifies to CC44.
  9. Evaluate f(1)f(-1): Now, we solve for CC: 2500=2500+40+C2500 = 2500 + 40 + C. Subtracting 25002500 and 4040 from both sides, we get C=2500250040C = 2500 - 2500 - 40. Calculating the value of CC, we find that C=40C = -40. Now we have the complete function f(x)=4x4+3x27x40f(x) = 4x^4 + 3x^2 - 7x - 40. Finally, we can find f(1)f(-1) by substituting CC00 into the function CC11. CC22. Calculating the values, we get CC33. This simplifies to CC44. Adding and subtracting the numbers, we find that CC55. CC66.