Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[f(x)=(1)/(x-1)],[g(x)=5x+8]:}
The functions 
f and 
g are defined. What is the value of 
f(g(-1)) ?

f(x)=1x1g(x)=5x+8 \begin{array}{l} f(x)=\frac{1}{x-1} \\ g(x)=5 x+8 \end{array} \newlineThe functions f f and g g are defined. What is the value of f(g(1)) f(g(-1)) ?

Full solution

Q. f(x)=1x1g(x)=5x+8 \begin{array}{l} f(x)=\frac{1}{x-1} \\ g(x)=5 x+8 \end{array} \newlineThe functions f f and g g are defined. What is the value of f(g(1)) f(g(-1)) ?
  1. Find g(1)g(-1): First, we need to find the value of g(1)g(-1) by substituting xx with 1-1 in the function g(x)g(x).
    g(x)=5x+8g(x) = 5x + 8
    g(1)=5(1)+8g(-1) = 5(-1) + 8
  2. Calculate g(1)g(-1): Now, let's perform the calculation for g(1)g(-1).
    g(1)=5(1)+8g(-1) = 5(-1) + 8
    g(1)=5+8g(-1) = -5 + 8
    g(1)=3g(-1) = 3
  3. Substitute into f(x)f(x): Next, we need to substitute the value of g(1)g(-1) into the function f(x)f(x) to find f(g(1))f(g(-1)).\newlinef(x)=1(x1)f(x) = \frac{1}{(x - 1)}\newlinef(g(1))=f(3)f(g(-1)) = f(3)
  4. Calculate f(3)f(3): Now, let's perform the calculation for f(3)f(3).\newlinef(3)=1(31)f(3) = \frac{1}{(3 - 1)}\newlinef(3)=12f(3) = \frac{1}{2}
  5. Final Result: We have found the value of f(g(1))f(g(-1)), which is f(3)f(3), and we have calculated it to be 12\frac{1}{2}.

More problems from Domain and range of absolute value functions: equations