Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
{
f
(
1
)
=
3
f
(
n
)
=
f
(
n
−
1
)
+
5.5
f
(
3
)
=
□
\begin{array}{l}\left\{\begin{array}{l}f(1)=3 \\ f(n)=f(n-1)+5.5\end{array}\right. \\ f(3)=\square\end{array}
{
f
(
1
)
=
3
f
(
n
)
=
f
(
n
−
1
)
+
5.5
f
(
3
)
=
□
View step-by-step help
Home
Math Problems
Algebra 1
Evaluate recursive formulas for sequences
Full solution
Q.
{
f
(
1
)
=
3
f
(
n
)
=
f
(
n
−
1
)
+
5.5
f
(
3
)
=
□
\begin{array}{l}\left\{\begin{array}{l}f(1)=3 \\ f(n)=f(n-1)+5.5\end{array}\right. \\ f(3)=\square\end{array}
{
f
(
1
)
=
3
f
(
n
)
=
f
(
n
−
1
)
+
5.5
f
(
3
)
=
□
Question Prompt:
The question prompt is: "What is the value of
f
(
3
)
f(3)
f
(
3
)
?"
Given Function and Initial Value:
Given the recursive function
f
(
n
)
=
f
(
n
−
1
)
+
5.5
f(n) = f(n-1) + 5.5
f
(
n
)
=
f
(
n
−
1
)
+
5.5
, and knowing that
f
(
1
)
=
3
f(1) = 3
f
(
1
)
=
3
, we need to find the value of
f
(
3
)
f(3)
f
(
3
)
.
Finding
f
(
2
)
f(2)
f
(
2
)
:
First, we find the value of
f
(
2
)
f(2)
f
(
2
)
using the recursive formula:
\newline
f
(
2
)
=
f
(
1
)
+
5.5
f(2) = f(1) + 5.5
f
(
2
)
=
f
(
1
)
+
5.5
\newline
f
(
2
)
=
3
+
5.5
f(2) = 3 + 5.5
f
(
2
)
=
3
+
5.5
\newline
f
(
2
)
=
8.5
f(2) = 8.5
f
(
2
)
=
8.5
Finding
f
(
3
)
f(3)
f
(
3
)
:
Now, we use the value of
f
(
2
)
f(2)
f
(
2
)
to find
f
(
3
)
f(3)
f
(
3
)
:
\newline
f
(
3
)
=
f
(
2
)
+
5.5
f(3) = f(2) + 5.5
f
(
3
)
=
f
(
2
)
+
5.5
\newline
f
(
3
)
=
8.5
+
5.5
f(3) = 8.5 + 5.5
f
(
3
)
=
8.5
+
5.5
\newline
f
(
3
)
=
14
f(3) = 14
f
(
3
)
=
14
More problems from Evaluate recursive formulas for sequences
Question
Find the sum of the finite arithmetic series.
∑
n
=
1
10
(
7
n
+
4
)
\sum_{n=1}^{10} (7n+4)
∑
n
=
1
10
(
7
n
+
4
)
\newline
______
Get tutor help
Posted 1 year ago
Question
Type the missing number in this sequence: `55,\59,\63,\text{_____},\71,\75,\79`
Get tutor help
Posted 10 months ago
Question
Type the missing number in this sequence: `2, 4 8`, ______,`32`
Get tutor help
Posted 10 months ago
Question
What kind of sequence is this?
2
,
10
,
50
,
250
,
…
2, 10, 50, 250, \ldots
2
,
10
,
50
,
250
,
…
Choices:Choices:
\newline
[A]arithmetic
\text{[A]arithmetic}
[A]arithmetic
\newline
[B]geometric
\text{[B]geometric}
[B]geometric
\newline
[C]both
\text{[C]both}
[C]both
\newline
[D]neither
\text{[D]neither}
[D]neither
Get tutor help
Posted 10 months ago
Question
What is the missing number in this pattern?
1
,
4
,
9
,
16
,
25
,
36
,
49
,
64
,
81
,
_
_
_
_
1, 4, 9, 16, 25, 36, 49, 64, 81, \_\_\_\_
1
,
4
,
9
,
16
,
25
,
36
,
49
,
64
,
81
,
____
Get tutor help
Posted 1 year ago
Question
Classify the series.
∑
n
=
0
12
(
n
+
2
)
3
\sum_{n = 0}^{12} (n + 2)^3
∑
n
=
0
12
(
n
+
2
)
3
\newline
Choices:
\newline
[A]arithmetic
\text{[A]arithmetic}
[A]arithmetic
\newline
[B]geometric
\text{[B]geometric}
[B]geometric
\newline
[C]both
\text{[C]both}
[C]both
\newline
[D]neither
\text{[D]neither}
[D]neither
Get tutor help
Posted 10 months ago
Question
Find the first three partial sums of the series.
\newline
1
+
6
+
11
+
16
+
21
+
26
+
⋯
1 + 6 + 11 + 16 + 21 + 26 + \cdots
1
+
6
+
11
+
16
+
21
+
26
+
⋯
\newline
Write your answers as integers or fractions in simplest form.
\newline
S
1
=
S_1 =
S
1
=
____
\newline
S
2
=
S_2 =
S
2
=
____
\newline
S
3
=
S_3 =
S
3
=
____
Get tutor help
Posted 1 year ago
Question
Find the third partial sum of the series.
\newline
3
+
9
+
15
+
21
+
27
+
33
+
⋯
3 + 9 + 15 + 21 + 27 + 33 + \cdots
3
+
9
+
15
+
21
+
27
+
33
+
⋯
\newline
Write your answer as an integer or a fraction in simplest form.
\newline
S
3
=
S_3 =
S
3
=
____
Get tutor help
Posted 1 year ago
Question
Find the first three partial sums of the series.
\newline
1
+
7
+
13
+
19
+
25
+
31
+
⋯
1 + 7 + 13 + 19 + 25 + 31 + \cdots
1
+
7
+
13
+
19
+
25
+
31
+
⋯
\newline
Write your answers as integers or fractions in simplest form.
\newline
S
1
=
S_1 =
S
1
=
____
\newline
S
2
=
S_2 =
S
2
=
____
\newline
S
3
=
S_3 =
S
3
=
____
Get tutor help
Posted 1 year ago
Question
Does the infinite geometric series converge or diverge?
\newline
1
+
3
4
+
9
16
+
27
64
+
⋯
1 + \frac{3}{4} + \frac{9}{16} + \frac{27}{64} + \cdots
1
+
4
3
+
16
9
+
64
27
+
⋯
\newline
Choices:
\newline
[A]converge
\text{[A]converge}
[A]converge
\newline
[B]diverge
\text{[B]diverge}
[B]diverge
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant