Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{[f(1)=3],[f(n)=f(n-1)+5.5]:}

f(3)=

{f(1)=3f(n)=f(n1)+5.5f(3)= \begin{array}{l}\left\{\begin{array}{l}f(1)=3 \\ f(n)=f(n-1)+5.5\end{array}\right. \\ f(3)=\square\end{array}

Full solution

Q. {f(1)=3f(n)=f(n1)+5.5f(3)= \begin{array}{l}\left\{\begin{array}{l}f(1)=3 \\ f(n)=f(n-1)+5.5\end{array}\right. \\ f(3)=\square\end{array}
  1. Question Prompt: The question prompt is: "What is the value of f(3)f(3)?"
  2. Given Function and Initial Value: Given the recursive function f(n)=f(n1)+5.5f(n) = f(n-1) + 5.5, and knowing that f(1)=3f(1) = 3, we need to find the value of f(3)f(3).
  3. Finding f(2)f(2): First, we find the value of f(2)f(2) using the recursive formula:\newlinef(2)=f(1)+5.5f(2) = f(1) + 5.5\newlinef(2)=3+5.5f(2) = 3 + 5.5\newlinef(2)=8.5f(2) = 8.5
  4. Finding f(3)f(3): Now, we use the value of f(2)f(2) to find f(3)f(3):\newlinef(3)=f(2)+5.5f(3) = f(2) + 5.5\newlinef(3)=8.5+5.5f(3) = 8.5 + 5.5\newlinef(3)=14f(3) = 14

More problems from Evaluate recursive formulas for sequences