Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{[f(1)=-3],[f(n)=-5*f(n-1)-7]:}

f(2)=

{f(1)=3f(n)=5f(n1)7f(2)= \begin{array}{l}\left\{\begin{array}{l}f(1)=-3 \\ f(n)=-5 \cdot f(n-1)-7\end{array}\right. \\ f(2)=\square\end{array}

Full solution

Q. {f(1)=3f(n)=5f(n1)7f(2)= \begin{array}{l}\left\{\begin{array}{l}f(1)=-3 \\ f(n)=-5 \cdot f(n-1)-7\end{array}\right. \\ f(2)=\square\end{array}
  1. Question Prompt: The question prompt is: "What is the value of f(2)f(2)?"\newlineGiven the recursive function:\newlinef(1)=3f(1) = -3\newlinef(n)=5f(n1)7f(n) = -5\cdot f(n-1) - 7\newlineWe need to find the value of f(2)f(2).
  2. Given Recursive Function: To find f(2)f(2), we use the recursive formula with n=2n=2:
    f(2)=5f(21)7f(2) = -5\cdot f(2-1) - 7
    f(2)=5f(1)7f(2) = -5\cdot f(1) - 7
    We know that f(1)=3f(1) = -3, so we substitute this value into the equation.
  3. Finding f(2)f(2): Now we calculate f(2)f(2):
    f(2)=5(3)7f(2) = -5 \cdot (-3) - 7
    f(2)=157f(2) = 15 - 7
    f(2)=8f(2) = 8
    We have found the value of f(2)f(2).

More problems from Evaluate recursive formulas for sequences